sample_rate: 16000 # BPE parameters token_type: unigram # ["unigram", "bpe", "char"] character_coverage: 1.0 # Model parameters activation: !name:torch.nn.GELU wav2vec_output_dim: 1024 dnn_neurons: 1024 freeze_wav2vec: false dropout: 0.2 # Outputs output_neurons: 80 # BPE size, index(blank/eos/bos) = 0 tokenizer: !new:sentencepiece.SentencePieceProcessor # Decoding parameters # Be sure that the bos and eos index match with the BPEs ones blank_index: 0 bos_index: 1 eos_index: 2 enc: &id002 !new:speechbrain.nnet.containers.Sequential input_shape: [null, null, 1024] linear1: !name:speechbrain.nnet.linear.Linear n_neurons: 1024 bias: true bn1: !name:speechbrain.nnet.normalization.BatchNorm1d activation: !new:torch.nn.GELU drop: !new:torch.nn.Dropout p: 0.2 linear2: !name:speechbrain.nnet.linear.Linear n_neurons: 1024 bias: true bn2: !name:speechbrain.nnet.normalization.BatchNorm1d activation2: !new:torch.nn.GELU drop2: !new:torch.nn.Dropout p: 0.2 linear3: !name:speechbrain.nnet.linear.Linear n_neurons: 1024 bias: true bn3: !name:speechbrain.nnet.normalization.BatchNorm1d activation3: !new:torch.nn.GELU wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 source: asafaya/hubert-large-arabic-transcribe output_norm: true freeze: false save_path: wav2vec2_checkpoint ctc_lin: !new:speechbrain.nnet.linear.Linear input_size: 1024 n_neurons: 80 log_softmax: !new:speechbrain.nnet.activations.Softmax apply_log: true ctc_cost: !name:speechbrain.nnet.losses.ctc_loss blank_index: 0 modules: encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential wav2vec2: !ref enc: !ref ctc_lin: !ref model: !new:torch.nn.ModuleList - [!ref , !ref ] error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats split_tokens: true decoding_function: !name:speechbrain.decoders.ctc.ctc_greedy_decode blank_id: !ref pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer loadables: wav2vec2: !ref model: !ref tokenizer: !ref