--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased_finetuning_distillation results: [] --- # bert-large-uncased_finetuning_distillation This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4721 - Accuracy: 0.8352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7395 | 1.39 | 500 | 0.8593 | 0.6847 | | 0.6019 | 2.78 | 1000 | 0.5655 | 0.7949 | | 0.3085 | 4.17 | 1500 | 0.4899 | 0.8293 | | 0.1631 | 5.56 | 2000 | 0.4558 | 0.8475 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1