ashishj20 commited on
Commit
1218dff
1 Parent(s): 4ad7845

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.78 +/- 22.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78b9c3b820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78b9c3b8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78b9c3b940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78b9c3b9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f78b9c3ba60>", "forward": "<function ActorCriticPolicy.forward at 0x7f78b9c3baf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f78b9c3bb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78b9c3bc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78b9c3bca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78b9c3bd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78b9c3bdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78b9c3be50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f78b9c3d080>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678690995958176003, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADKLjxIC6y64hCHu2+te7bB4/w5Fd2aOgAAgD8AAIA/VomGPs/tAz/pAoK+Zc+Kvhrw1zzFXlk8AAAAAAAAAABmRXG94WiyuhKw27oJ3gS2JLYBOlrZ+jkAAIA/AACAPzPomrwUZJe6CiTdu/Z3pzfk29y6ttUOtwAAgD8AAIA/ZgROvRRwgrqlH4K78sNnOPDBcjm91BE6AACAPwAAgD9mr8y8j8pXurFJkjvV2Iy1cQeGO6w9rLoAAIA/AACAP3P6/T3sh++7qcbGPMStpDzlilm9JKiIPQAAgD8AAIA/TdolPeGUkrqC0II8oTqCPAyTBjrWCGI9AACAPwAAgD/mDjU9jz4suraK0DiJnRUyBvRHOltB9LcAAIA/AACAP7MOsj2uZ5q4uvAwu1bEwjf5W087w7zmOQAAAAAAAIA/GlmAvXvuqLpXJoW5WiWXtHO8IDoqaZg4AACAPwAAgD+zXjI917U3Pm3yc75G/Gi+sX/qvRohz7kAAAAAAAAAAAAU5DyPpl26pdcGOOqLDrZP7lG7OucatwAAgD8AAIA/pkyWPfaEVLrBoSc484gRM95R8TZiYkW3AACAPwAAgD/NAHm94RrTuAbgzjpefaQ0FH4XvLs8+7kAAIA/AACAP4BcHD5cz2I7F97Jup5HI7g9HAo99dP0OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEk2giMXSZUCUhpRSlIwBbJRN6AOMAXSUR0CVsxD0Dlo2dX2UKGgGaAloD0MIUYL+Qo/uX0CUhpRSlGgVTegDaBZHQJW3JDBuXNV1fZQoaAZoCWgPQwhhinJpfLhjQJSGlFKUaBVN6ANoFkdAlcPO+Eh7mnV9lChoBmgJaA9DCEs/4exWXWFAlIaUUpRoFU3oA2gWR0CVzK//echDdX2UKGgGaAloD0MIw6BMo0kKZkCUhpRSlGgVTegDaBZHQJXY4W2w3YN1fZQoaAZoCWgPQwjoEaPnFg9kQJSGlFKUaBVN6ANoFkdAldlOfywwCnV9lChoBmgJaA9DCMxG5/wU5W5AlIaUUpRoFU02A2gWR0CV3EDWbwz+dX2UKGgGaAloD0MIOjsZHKV3ZkCUhpRSlGgVTegDaBZHQJXcW/Efkmx1fZQoaAZoCWgPQwjNc0S+y3NiQJSGlFKUaBVN6ANoFkdAleF95Y5ksnV9lChoBmgJaA9DCK29T1WhWGJAlIaUUpRoFU3oA2gWR0CV4bFK02LpdX2UKGgGaAloD0MIMGR1q2eoZkCUhpRSlGgVTegDaBZHQJXnrTqjaf11fZQoaAZoCWgPQwgyAiocwWZkQJSGlFKUaBVN6ANoFkdAleeulTFVDXV9lChoBmgJaA9DCLmLMEW5NF1AlIaUUpRoFU3oA2gWR0CV6kQsf7rLdX2UKGgGaAloD0MIzEOmfAgbZ0CUhpRSlGgVTegDaBZHQJX+b0qYqoZ1fZQoaAZoCWgPQwigUE8fAUZoQJSGlFKUaBVN6ANoFkdAlgLDTOPeYXV9lChoBmgJaA9DCL9DUaDPU29AlIaUUpRoFU1BAWgWR0CWBZVIqbz9dX2UKGgGaAloD0MIdaxSeqYvSECUhpRSlGgVS9hoFkdAlgddwaR6nnV9lChoBmgJaA9DCLBYw0XuvlxAlIaUUpRoFU3oA2gWR0CWB9nRsuWbdX2UKGgGaAloD0MIt32P+utlY0CUhpRSlGgVTegDaBZHQJYKb7xd6cB1fZQoaAZoCWgPQwiGrkSg+hNjQJSGlFKUaBVN6ANoFkdAlg8+xSpBHHV9lChoBmgJaA9DCMVYpl8ibGBAlIaUUpRoFU3oA2gWR0CWFlWSEDhcdX2UKGgGaAloD0MIBvLs8i30Y0CUhpRSlGgVTegDaBZHQJYbyFBY3eh1fZQoaAZoCWgPQwhI/Io1XHNkQJSGlFKUaBVN6ANoFkdAliQ9diUgS3V9lChoBmgJaA9DCPKXFvXJ3mFAlIaUUpRoFU3oA2gWR0CWJKnPE87qdX2UKGgGaAloD0MI0SNGz62gYkCUhpRSlGgVTegDaBZHQJYnhJZntfJ1fZQoaAZoCWgPQwgWTPxR1AFiQJSGlFKUaBVN6ANoFkdAlieeBDohZHV9lChoBmgJaA9DCO4jtyZdCGVAlIaUUpRoFU3oA2gWR0CWLTESM98rdX2UKGgGaAloD0MIpIl3gCc3Y0CUhpRSlGgVTegDaBZHQJYzoJVsDW91fZQoaAZoCWgPQwikUBa+PtNiQJSGlFKUaBVN6ANoFkdAljZTibUgCHV9lChoBmgJaA9DCD7pRIIp7mZAlIaUUpRoFU3oA2gWR0CWUAPjXFtLdX2UKGgGaAloD0MI4X7AA4MqZkCUhpRSlGgVTegDaBZHQJZTO8RL9Mt1fZQoaAZoCWgPQwg+d4L91xRlQJSGlFKUaBVN6ANoFkdAllUcma6ST3V9lChoBmgJaA9DCHALluqCgWFAlIaUUpRoFU3oA2gWR0CWVlHeJpFkdX2UKGgGaAloD0MIGTxM++YjZECUhpRSlGgVTegDaBZHQJZWoDTz/ZN1fZQoaAZoCWgPQwgLmpZYmahjQJSGlFKUaBVN6ANoFkdAllhITGo73nV9lChoBmgJaA9DCEJg5dAimwFAlIaUUpRoFUv2aBZHQJZbdyQxN7B1fZQoaAZoCWgPQwi+F1+0Ry5mQJSGlFKUaBVN6ANoFkdAlluCIpH7QHV9lChoBmgJaA9DCNJyoIfa8WNAlIaUUpRoFU3oA2gWR0CWYccD8tPIdX2UKGgGaAloD0MIRidLrfe3S0CUhpRSlGgVS9VoFkdAlmXbUCq6v3V9lChoBmgJaA9DCM76lGOyYmRAlIaUUpRoFU3oA2gWR0CWZwI55qubdX2UKGgGaAloD0MIvtu8cdIxaECUhpRSlGgVTegDaBZHQJZuiHk92X91fZQoaAZoCWgPQwghlPdxNNRjQJSGlFKUaBVN6ANoFkdAlm7oH9m6G3V9lChoBmgJaA9DCF0Y6UXtiGhAlIaUUpRoFU3oA2gWR0CWcXdPtUn5dX2UKGgGaAloD0MIJzCd1m0qYUCUhpRSlGgVTegDaBZHQJZxkFRpDeF1fZQoaAZoCWgPQwip9X6jHSFNQJSGlFKUaBVL2GgWR0CWcmHskY4ydX2UKGgGaAloD0MIZ9R8lXwxZUCUhpRSlGgVTegDaBZHQJZ4QNNJvpB1fZQoaAZoCWgPQwjWqIdo9D5kQJSGlFKUaBVN6ANoFkdAloFxFmWdE3V9lChoBmgJaA9DCNZXVwVq5GNAlIaUUpRoFU3oA2gWR0CWhTIKc/dJdX2UKGgGaAloD0MIGVjH8UNLZECUhpRSlGgVTegDaBZHQJadcWKuSwJ1fZQoaAZoCWgPQwjjT1Q2rKljQJSGlFKUaBVN6ANoFkdAlp+0lRgqmXV9lChoBmgJaA9DCD0MrU7OvVxAlIaUUpRoFU3oA2gWR0CWoTULDye7dX2UKGgGaAloD0MI78ouGNygYECUhpRSlGgVTegDaBZHQJahm8wpON51fZQoaAZoCWgPQwgG2EenrsJgQJSGlFKUaBVN6ANoFkdAlqRU8vEjxHV9lChoBmgJaA9DCIT0FDlEzF9AlIaUUpRoFU3oA2gWR0CWqbbA1vVFdX2UKGgGaAloD0MI4zPZP88CYUCUhpRSlGgVTegDaBZHQJa1lCgK4QV1fZQoaAZoCWgPQwgfSrTk8dJgQJSGlFKUaBVN6ANoFkdAlrzURSP2f3V9lChoBmgJaA9DCGByo8haY2VAlIaUUpRoFU3oA2gWR0CWyHYYBNmEdX2UKGgGaAloD0MIV81zRL6/bUCUhpRSlGgVTZ0DaBZHQJbIoU1yeZp1fZQoaAZoCWgPQwh/3795ccljQJSGlFKUaBVN6ANoFkdAlsja7ulXR3V9lChoBmgJaA9DCF6CUx9Iel9AlIaUUpRoFU3oA2gWR0CWy1WZZ0SzdX2UKGgGaAloD0MIzc03ovtTZECUhpRSlGgVTegDaBZHQJbLbGp++dt1fZQoaAZoCWgPQwjHnGfsyzNnQJSGlFKUaBVN6ANoFkdAltAu85CF9XV9lChoBmgJaA9DCAFO7+L90EBAlIaUUpRoFUvpaBZHQJbTVGAkLQZ1fZQoaAZoCWgPQwh00CUc+u1lQJSGlFKUaBVN6ANoFkdAltYv82rGR3V9lChoBmgJaA9DCIyfxr35T2RAlIaUUpRoFU3oA2gWR0CW2NKji4rjdX2UKGgGaAloD0MIKPOPvsmsY0CUhpRSlGgVTegDaBZHQJbx62QXAM51fZQoaAZoCWgPQwgtPgXA+HlnQJSGlFKUaBVN6ANoFkdAlvTU2gnMMnV9lChoBmgJaA9DCAnh0caRL2JAlIaUUpRoFU3oA2gWR0CW9riyY5T7dX2UKGgGaAloD0MIMCk+PqHlZECUhpRSlGgVTegDaBZHQJb3NQm/nGN1fZQoaAZoCWgPQwihLedSXF5eQJSGlFKUaBVN6ANoFkdAlvnHTiKiwnV9lChoBmgJaA9DCBA+lGjJfmdAlIaUUpRoFU3oA2gWR0CW/jMy8BdVdX2UKGgGaAloD0MI3NeBc8aYYkCUhpRSlGgVTegDaBZHQJcExPN3W4F1fZQoaAZoCWgPQwi05PG0fCVkQJSGlFKUaBVN6ANoFkdAlwi5nL7oCHV9lChoBmgJaA9DCECk374OgGNAlIaUUpRoFU3oA2gWR0CXEJN70Fr3dX2UKGgGaAloD0MII9i4/t02YUCUhpRSlGgVTegDaBZHQJcQ61QZXMh1fZQoaAZoCWgPQwiCHmrbsFdjQJSGlFKUaBVN6ANoFkdAlxNz2vjfenV9lChoBmgJaA9DCIaOHVRilWZAlIaUUpRoFU3oA2gWR0CXE4pI+W4WdX2UKGgGaAloD0MIgjl6/N6BYkCUhpRSlGgVTegDaBZHQJcYrf/FR511fZQoaAZoCWgPQwg429yYHpdjQJSGlFKUaBVN6ANoFkdAlxwMfV7QcHV9lChoBmgJaA9DCA5pVODkk2NAlIaUUpRoFU3oA2gWR0CXHwIYFaB7dX2UKGgGaAloD0MIXTRkPMrTZkCUhpRSlGgVTegDaBZHQJchqwRoRI11fZQoaAZoCWgPQwiYpZ2ayxRbQJSGlFKUaBVN6ANoFkdAlyd6tga3qnV9lChoBmgJaA9DCFT+tbzy42JAlIaUUpRoFU3oA2gWR0CXQRyIHkcTdX2UKGgGaAloD0MIKji8ICKjY0CUhpRSlGgVTegDaBZHQJdCdIFvAGl1fZQoaAZoCWgPQwgMyF7vfv9jQJSGlFKUaBVN6ANoFkdAl0LOV9nbqXV9lChoBmgJaA9DCKN2vwpweWdAlIaUUpRoFU3oA2gWR0CXRK/MW43FdX2UKGgGaAloD0MI6rMDriuyZECUhpRSlGgVTegDaBZHQJdH++0w8GN1fZQoaAZoCWgPQwh6xVOPtJlhQJSGlFKUaBVN6ANoFkdAl06jot+TeXV9lChoBmgJaA9DCEHXvoBetG5AlIaUUpRoFU1EAWgWR0CXTv8G9pRGdX2UKGgGaAloD0MIxOi5ha5ucECUhpRSlGgVTeACaBZHQJdQJLQHAyp1fZQoaAZoCWgPQwiRQ8TNqW5kQJSGlFKUaBVN6ANoFkdAl1JdKVY6n3V9lChoBmgJaA9DCCybOSS1f29AlIaUUpRoFU2yAWgWR0CXWc6E8JUpdX2UKGgGaAloD0MIU7MHWgFsZUCUhpRSlGgVTegDaBZHQJdaRgssg+11fZQoaAZoCWgPQwjesG1RZmBnQJSGlFKUaBVN6ANoFkdAl1qfxH5JsnV9lChoBmgJaA9DCJP8iF+xZ2VAlIaUUpRoFU3oA2gWR0CXXR8tf5UMdX2UKGgGaAloD0MIo66196ncYkCUhpRSlGgVTegDaBZHQJdkGW+oLoh1fZQoaAZoCWgPQwiQwB9+/u8zQJSGlFKUaBVL5WgWR0CXaMt+CsfadX2UKGgGaAloD0MIs7YpHpfAYkCUhpRSlGgVTegDaBZHQJdpSJyhi9Z1fZQoaAZoCWgPQwgiOZm4VbBiQJSGlFKUaBVN6ANoFkdAl21zfzjFQ3V9lChoBmgJaA9DCN2YnrDEcmZAlIaUUpRoFU3oA2gWR0CXcOz7MxGldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54bb78f62c42801dc038c57fe75e68f54a9757bb49c19459a55526a8560506c2
3
+ size 147421
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78b9c3b820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78b9c3b8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78b9c3b940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78b9c3b9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f78b9c3ba60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f78b9c3baf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f78b9c3bb80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78b9c3bc10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f78b9c3bca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78b9c3bd30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78b9c3bdc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78b9c3be50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f78b9c3d080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678690995958176003,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADKLjxIC6y64hCHu2+te7bB4/w5Fd2aOgAAgD8AAIA/VomGPs/tAz/pAoK+Zc+Kvhrw1zzFXlk8AAAAAAAAAABmRXG94WiyuhKw27oJ3gS2JLYBOlrZ+jkAAIA/AACAPzPomrwUZJe6CiTdu/Z3pzfk29y6ttUOtwAAgD8AAIA/ZgROvRRwgrqlH4K78sNnOPDBcjm91BE6AACAPwAAgD9mr8y8j8pXurFJkjvV2Iy1cQeGO6w9rLoAAIA/AACAP3P6/T3sh++7qcbGPMStpDzlilm9JKiIPQAAgD8AAIA/TdolPeGUkrqC0II8oTqCPAyTBjrWCGI9AACAPwAAgD/mDjU9jz4suraK0DiJnRUyBvRHOltB9LcAAIA/AACAP7MOsj2uZ5q4uvAwu1bEwjf5W087w7zmOQAAAAAAAIA/GlmAvXvuqLpXJoW5WiWXtHO8IDoqaZg4AACAPwAAgD+zXjI917U3Pm3yc75G/Gi+sX/qvRohz7kAAAAAAAAAAAAU5DyPpl26pdcGOOqLDrZP7lG7OucatwAAgD8AAIA/pkyWPfaEVLrBoSc484gRM95R8TZiYkW3AACAPwAAgD/NAHm94RrTuAbgzjpefaQ0FH4XvLs8+7kAAIA/AACAP4BcHD5cz2I7F97Jup5HI7g9HAo99dP0OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEk2giMXSZUCUhpRSlIwBbJRN6AOMAXSUR0CVsxD0Dlo2dX2UKGgGaAloD0MIUYL+Qo/uX0CUhpRSlGgVTegDaBZHQJW3JDBuXNV1fZQoaAZoCWgPQwhhinJpfLhjQJSGlFKUaBVN6ANoFkdAlcPO+Eh7mnV9lChoBmgJaA9DCEs/4exWXWFAlIaUUpRoFU3oA2gWR0CVzK//echDdX2UKGgGaAloD0MIw6BMo0kKZkCUhpRSlGgVTegDaBZHQJXY4W2w3YN1fZQoaAZoCWgPQwjoEaPnFg9kQJSGlFKUaBVN6ANoFkdAldlOfywwCnV9lChoBmgJaA9DCMxG5/wU5W5AlIaUUpRoFU02A2gWR0CV3EDWbwz+dX2UKGgGaAloD0MIOjsZHKV3ZkCUhpRSlGgVTegDaBZHQJXcW/Efkmx1fZQoaAZoCWgPQwjNc0S+y3NiQJSGlFKUaBVN6ANoFkdAleF95Y5ksnV9lChoBmgJaA9DCK29T1WhWGJAlIaUUpRoFU3oA2gWR0CV4bFK02LpdX2UKGgGaAloD0MIMGR1q2eoZkCUhpRSlGgVTegDaBZHQJXnrTqjaf11fZQoaAZoCWgPQwgyAiocwWZkQJSGlFKUaBVN6ANoFkdAleeulTFVDXV9lChoBmgJaA9DCLmLMEW5NF1AlIaUUpRoFU3oA2gWR0CV6kQsf7rLdX2UKGgGaAloD0MIzEOmfAgbZ0CUhpRSlGgVTegDaBZHQJX+b0qYqoZ1fZQoaAZoCWgPQwigUE8fAUZoQJSGlFKUaBVN6ANoFkdAlgLDTOPeYXV9lChoBmgJaA9DCL9DUaDPU29AlIaUUpRoFU1BAWgWR0CWBZVIqbz9dX2UKGgGaAloD0MIdaxSeqYvSECUhpRSlGgVS9hoFkdAlgddwaR6nnV9lChoBmgJaA9DCLBYw0XuvlxAlIaUUpRoFU3oA2gWR0CWB9nRsuWbdX2UKGgGaAloD0MIt32P+utlY0CUhpRSlGgVTegDaBZHQJYKb7xd6cB1fZQoaAZoCWgPQwiGrkSg+hNjQJSGlFKUaBVN6ANoFkdAlg8+xSpBHHV9lChoBmgJaA9DCMVYpl8ibGBAlIaUUpRoFU3oA2gWR0CWFlWSEDhcdX2UKGgGaAloD0MIBvLs8i30Y0CUhpRSlGgVTegDaBZHQJYbyFBY3eh1fZQoaAZoCWgPQwhI/Io1XHNkQJSGlFKUaBVN6ANoFkdAliQ9diUgS3V9lChoBmgJaA9DCPKXFvXJ3mFAlIaUUpRoFU3oA2gWR0CWJKnPE87qdX2UKGgGaAloD0MI0SNGz62gYkCUhpRSlGgVTegDaBZHQJYnhJZntfJ1fZQoaAZoCWgPQwgWTPxR1AFiQJSGlFKUaBVN6ANoFkdAlieeBDohZHV9lChoBmgJaA9DCO4jtyZdCGVAlIaUUpRoFU3oA2gWR0CWLTESM98rdX2UKGgGaAloD0MIpIl3gCc3Y0CUhpRSlGgVTegDaBZHQJYzoJVsDW91fZQoaAZoCWgPQwikUBa+PtNiQJSGlFKUaBVN6ANoFkdAljZTibUgCHV9lChoBmgJaA9DCD7pRIIp7mZAlIaUUpRoFU3oA2gWR0CWUAPjXFtLdX2UKGgGaAloD0MI4X7AA4MqZkCUhpRSlGgVTegDaBZHQJZTO8RL9Mt1fZQoaAZoCWgPQwg+d4L91xRlQJSGlFKUaBVN6ANoFkdAllUcma6ST3V9lChoBmgJaA9DCHALluqCgWFAlIaUUpRoFU3oA2gWR0CWVlHeJpFkdX2UKGgGaAloD0MIGTxM++YjZECUhpRSlGgVTegDaBZHQJZWoDTz/ZN1fZQoaAZoCWgPQwgLmpZYmahjQJSGlFKUaBVN6ANoFkdAllhITGo73nV9lChoBmgJaA9DCEJg5dAimwFAlIaUUpRoFUv2aBZHQJZbdyQxN7B1fZQoaAZoCWgPQwi+F1+0Ry5mQJSGlFKUaBVN6ANoFkdAlluCIpH7QHV9lChoBmgJaA9DCNJyoIfa8WNAlIaUUpRoFU3oA2gWR0CWYccD8tPIdX2UKGgGaAloD0MIRidLrfe3S0CUhpRSlGgVS9VoFkdAlmXbUCq6v3V9lChoBmgJaA9DCM76lGOyYmRAlIaUUpRoFU3oA2gWR0CWZwI55qubdX2UKGgGaAloD0MIvtu8cdIxaECUhpRSlGgVTegDaBZHQJZuiHk92X91fZQoaAZoCWgPQwghlPdxNNRjQJSGlFKUaBVN6ANoFkdAlm7oH9m6G3V9lChoBmgJaA9DCF0Y6UXtiGhAlIaUUpRoFU3oA2gWR0CWcXdPtUn5dX2UKGgGaAloD0MIJzCd1m0qYUCUhpRSlGgVTegDaBZHQJZxkFRpDeF1fZQoaAZoCWgPQwip9X6jHSFNQJSGlFKUaBVL2GgWR0CWcmHskY4ydX2UKGgGaAloD0MIZ9R8lXwxZUCUhpRSlGgVTegDaBZHQJZ4QNNJvpB1fZQoaAZoCWgPQwjWqIdo9D5kQJSGlFKUaBVN6ANoFkdAloFxFmWdE3V9lChoBmgJaA9DCNZXVwVq5GNAlIaUUpRoFU3oA2gWR0CWhTIKc/dJdX2UKGgGaAloD0MIGVjH8UNLZECUhpRSlGgVTegDaBZHQJadcWKuSwJ1fZQoaAZoCWgPQwjjT1Q2rKljQJSGlFKUaBVN6ANoFkdAlp+0lRgqmXV9lChoBmgJaA9DCD0MrU7OvVxAlIaUUpRoFU3oA2gWR0CWoTULDye7dX2UKGgGaAloD0MI78ouGNygYECUhpRSlGgVTegDaBZHQJahm8wpON51fZQoaAZoCWgPQwgG2EenrsJgQJSGlFKUaBVN6ANoFkdAlqRU8vEjxHV9lChoBmgJaA9DCIT0FDlEzF9AlIaUUpRoFU3oA2gWR0CWqbbA1vVFdX2UKGgGaAloD0MI4zPZP88CYUCUhpRSlGgVTegDaBZHQJa1lCgK4QV1fZQoaAZoCWgPQwgfSrTk8dJgQJSGlFKUaBVN6ANoFkdAlrzURSP2f3V9lChoBmgJaA9DCGByo8haY2VAlIaUUpRoFU3oA2gWR0CWyHYYBNmEdX2UKGgGaAloD0MIV81zRL6/bUCUhpRSlGgVTZ0DaBZHQJbIoU1yeZp1fZQoaAZoCWgPQwh/3795ccljQJSGlFKUaBVN6ANoFkdAlsja7ulXR3V9lChoBmgJaA9DCF6CUx9Iel9AlIaUUpRoFU3oA2gWR0CWy1WZZ0SzdX2UKGgGaAloD0MIzc03ovtTZECUhpRSlGgVTegDaBZHQJbLbGp++dt1fZQoaAZoCWgPQwjHnGfsyzNnQJSGlFKUaBVN6ANoFkdAltAu85CF9XV9lChoBmgJaA9DCAFO7+L90EBAlIaUUpRoFUvpaBZHQJbTVGAkLQZ1fZQoaAZoCWgPQwh00CUc+u1lQJSGlFKUaBVN6ANoFkdAltYv82rGR3V9lChoBmgJaA9DCIyfxr35T2RAlIaUUpRoFU3oA2gWR0CW2NKji4rjdX2UKGgGaAloD0MIKPOPvsmsY0CUhpRSlGgVTegDaBZHQJbx62QXAM51fZQoaAZoCWgPQwgtPgXA+HlnQJSGlFKUaBVN6ANoFkdAlvTU2gnMMnV9lChoBmgJaA9DCAnh0caRL2JAlIaUUpRoFU3oA2gWR0CW9riyY5T7dX2UKGgGaAloD0MIMCk+PqHlZECUhpRSlGgVTegDaBZHQJb3NQm/nGN1fZQoaAZoCWgPQwihLedSXF5eQJSGlFKUaBVN6ANoFkdAlvnHTiKiwnV9lChoBmgJaA9DCBA+lGjJfmdAlIaUUpRoFU3oA2gWR0CW/jMy8BdVdX2UKGgGaAloD0MI3NeBc8aYYkCUhpRSlGgVTegDaBZHQJcExPN3W4F1fZQoaAZoCWgPQwi05PG0fCVkQJSGlFKUaBVN6ANoFkdAlwi5nL7oCHV9lChoBmgJaA9DCECk374OgGNAlIaUUpRoFU3oA2gWR0CXEJN70Fr3dX2UKGgGaAloD0MII9i4/t02YUCUhpRSlGgVTegDaBZHQJcQ61QZXMh1fZQoaAZoCWgPQwiCHmrbsFdjQJSGlFKUaBVN6ANoFkdAlxNz2vjfenV9lChoBmgJaA9DCIaOHVRilWZAlIaUUpRoFU3oA2gWR0CXE4pI+W4WdX2UKGgGaAloD0MIgjl6/N6BYkCUhpRSlGgVTegDaBZHQJcYrf/FR511fZQoaAZoCWgPQwg429yYHpdjQJSGlFKUaBVN6ANoFkdAlxwMfV7QcHV9lChoBmgJaA9DCA5pVODkk2NAlIaUUpRoFU3oA2gWR0CXHwIYFaB7dX2UKGgGaAloD0MIXTRkPMrTZkCUhpRSlGgVTegDaBZHQJchqwRoRI11fZQoaAZoCWgPQwiYpZ2ayxRbQJSGlFKUaBVN6ANoFkdAlyd6tga3qnV9lChoBmgJaA9DCFT+tbzy42JAlIaUUpRoFU3oA2gWR0CXQRyIHkcTdX2UKGgGaAloD0MIKji8ICKjY0CUhpRSlGgVTegDaBZHQJdCdIFvAGl1fZQoaAZoCWgPQwgMyF7vfv9jQJSGlFKUaBVN6ANoFkdAl0LOV9nbqXV9lChoBmgJaA9DCKN2vwpweWdAlIaUUpRoFU3oA2gWR0CXRK/MW43FdX2UKGgGaAloD0MI6rMDriuyZECUhpRSlGgVTegDaBZHQJdH++0w8GN1fZQoaAZoCWgPQwh6xVOPtJlhQJSGlFKUaBVN6ANoFkdAl06jot+TeXV9lChoBmgJaA9DCEHXvoBetG5AlIaUUpRoFU1EAWgWR0CXTv8G9pRGdX2UKGgGaAloD0MIxOi5ha5ucECUhpRSlGgVTeACaBZHQJdQJLQHAyp1fZQoaAZoCWgPQwiRQ8TNqW5kQJSGlFKUaBVN6ANoFkdAl1JdKVY6n3V9lChoBmgJaA9DCCybOSS1f29AlIaUUpRoFU2yAWgWR0CXWc6E8JUpdX2UKGgGaAloD0MIU7MHWgFsZUCUhpRSlGgVTegDaBZHQJdaRgssg+11fZQoaAZoCWgPQwjesG1RZmBnQJSGlFKUaBVN6ANoFkdAl1qfxH5JsnV9lChoBmgJaA9DCJP8iF+xZ2VAlIaUUpRoFU3oA2gWR0CXXR8tf5UMdX2UKGgGaAloD0MIo66196ncYkCUhpRSlGgVTegDaBZHQJdkGW+oLoh1fZQoaAZoCWgPQwiQwB9+/u8zQJSGlFKUaBVL5WgWR0CXaMt+CsfadX2UKGgGaAloD0MIs7YpHpfAYkCUhpRSlGgVTegDaBZHQJdpSJyhi9Z1fZQoaAZoCWgPQwgiOZm4VbBiQJSGlFKUaBVN6ANoFkdAl21zfzjFQ3V9lChoBmgJaA9DCN2YnrDEcmZAlIaUUpRoFU3oA2gWR0CXcOz7MxGldWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46b98e93dc575c918de6fe0bf02e8221666a0a10dce706b2b71257e2b22ff96
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6af85a724c6502b251989b3ac946eff0d487d63bf4976351600a01d5034a8ba9
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (233 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.78448166492203, "std_reward": 22.69774562769021, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T08:30:35.063220"}