File size: 2,490 Bytes
6c30026
8bac93f
 
 
 
 
 
 
 
6c30026
 
8bac93f
 
ee96698
bbb3452
8bac93f
6c30026
ee96698
8bac93f
c331f06
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
6c30026
8bac93f
 
 
 
 
 
 
 
 
 
c331f06
8bac93f
6c30026
8bac93f
6c30026
8bac93f
 
c331f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c30026
 
8bac93f
6c30026
8bac93f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: shakespeare-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Cite 
This model is trained from Talebi S. YouTube-Blog. 2024. https://github.com/ShawhinT/YouTube-Blog
# shakespeare-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an [Lambent/shakespeare_sonnets_backtranslated](https://huggingface.co/datasets/Lambent/shakespeare_sonnets_backtranslated) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7122

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 16
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3058        | 0.97  | 15   | 1.2255          |
| 1.017         | 2.0   | 31   | 1.1220          |
| 0.9377        | 2.97  | 46   | 1.0527          |
| 0.7699        | 4.0   | 62   | 0.9921          |
| 0.728         | 4.97  | 77   | 0.9438          |
| 0.6098        | 6.0   | 93   | 0.8995          |
| 0.5781        | 6.97  | 108  | 0.8649          |
| 0.4823        | 8.0   | 124  | 0.8288          |
| 0.4598        | 8.97  | 139  | 0.8065          |
| 0.3866        | 10.0  | 155  | 0.7736          |
| 0.3693        | 10.97 | 170  | 0.7525          |
| 0.3165        | 12.0  | 186  | 0.7422          |
| 0.312         | 12.97 | 201  | 0.7276          |
| 0.2761        | 14.0  | 217  | 0.7160          |
| 0.2815        | 14.97 | 232  | 0.7121          |
| 0.2463        | 15.48 | 240  | 0.7122          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2