File size: 2,490 Bytes
6c30026 8bac93f 6c30026 8bac93f ee96698 bbb3452 8bac93f 6c30026 ee96698 8bac93f c331f06 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f 6c30026 8bac93f c331f06 8bac93f 6c30026 8bac93f 6c30026 8bac93f c331f06 6c30026 8bac93f 6c30026 8bac93f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: shakespeare-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Cite
This model is trained from Talebi S. YouTube-Blog. 2024. https://github.com/ShawhinT/YouTube-Blog
# shakespeare-ft
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an [Lambent/shakespeare_sonnets_backtranslated](https://huggingface.co/datasets/Lambent/shakespeare_sonnets_backtranslated) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 16
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3058 | 0.97 | 15 | 1.2255 |
| 1.017 | 2.0 | 31 | 1.1220 |
| 0.9377 | 2.97 | 46 | 1.0527 |
| 0.7699 | 4.0 | 62 | 0.9921 |
| 0.728 | 4.97 | 77 | 0.9438 |
| 0.6098 | 6.0 | 93 | 0.8995 |
| 0.5781 | 6.97 | 108 | 0.8649 |
| 0.4823 | 8.0 | 124 | 0.8288 |
| 0.4598 | 8.97 | 139 | 0.8065 |
| 0.3866 | 10.0 | 155 | 0.7736 |
| 0.3693 | 10.97 | 170 | 0.7525 |
| 0.3165 | 12.0 | 186 | 0.7422 |
| 0.312 | 12.97 | 201 | 0.7276 |
| 0.2761 | 14.0 | 217 | 0.7160 |
| 0.2815 | 14.97 | 232 | 0.7121 |
| 0.2463 | 15.48 | 240 | 0.7122 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2 |