ashraq commited on
Commit
5972d48
1 Parent(s): 08a2329

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
@@ -7,7 +9,7 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -27,7 +29,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -50,8 +52,8 @@ def cls_pooling(model_output, attention_mask):
50
  sentences = ['This is an example sentence', 'Each sentence is converted']
51
 
52
  # Load model from HuggingFace Hub
53
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
54
- model = AutoModel.from_pretrained('{MODEL_NAME}')
55
 
56
  # Tokenize sentences
57
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -93,7 +95,7 @@ The model was trained with the parameters:
93
  Parameters of the fit()-Method:
94
  ```
95
  {
96
- "epochs": 2,
97
  "evaluation_steps": 0,
98
  "evaluator": "NoneType",
99
  "max_grad_norm": 1,
 
1
  ---
2
+ language:
3
+ - dv
4
  pipeline_tag: sentence-similarity
5
  tags:
6
  - sentence-transformers
 
9
  - transformers
10
  ---
11
 
12
+ # Dhivehi TSDAE News BERT
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
+ model = SentenceTransformer('ashraq/tsdae-bert-base-dv-news-title')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
 
52
  sentences = ['This is an example sentence', 'Each sentence is converted']
53
 
54
  # Load model from HuggingFace Hub
55
+ tokenizer = AutoTokenizer.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
56
+ model = AutoModel.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
57
 
58
  # Tokenize sentences
59
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
95
  Parameters of the fit()-Method:
96
  ```
97
  {
98
+ "epochs": 3,
99
  "evaluation_steps": 0,
100
  "evaluator": "NoneType",
101
  "max_grad_norm": 1,