Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
@@ -7,7 +9,7 @@ tags:
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
@@ -27,7 +29,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -50,8 +52,8 @@ def cls_pooling(model_output, attention_mask):
|
|
50 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
51 |
|
52 |
# Load model from HuggingFace Hub
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
54 |
-
model = AutoModel.from_pretrained('
|
55 |
|
56 |
# Tokenize sentences
|
57 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -93,7 +95,7 @@ The model was trained with the parameters:
|
|
93 |
Parameters of the fit()-Method:
|
94 |
```
|
95 |
{
|
96 |
-
"epochs":
|
97 |
"evaluation_steps": 0,
|
98 |
"evaluator": "NoneType",
|
99 |
"max_grad_norm": 1,
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- dv
|
4 |
pipeline_tag: sentence-similarity
|
5 |
tags:
|
6 |
- sentence-transformers
|
|
|
9 |
- transformers
|
10 |
---
|
11 |
|
12 |
+
# Dhivehi TSDAE News BERT
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('ashraq/tsdae-bert-base-dv-news-title')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
52 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
53 |
|
54 |
# Load model from HuggingFace Hub
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
|
56 |
+
model = AutoModel.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
|
57 |
|
58 |
# Tokenize sentences
|
59 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
95 |
Parameters of the fit()-Method:
|
96 |
```
|
97 |
{
|
98 |
+
"epochs": 3,
|
99 |
"evaluation_steps": 0,
|
100 |
"evaluator": "NoneType",
|
101 |
"max_grad_norm": 1,
|