File size: 6,681 Bytes
4cbe809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Setup & Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!apt install -y tesseract-ocr\n",
"pip install pytesseract"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Create Custom Handler for Inference Endpoints\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting handler.py\n"
]
}
],
"source": [
"%%writefile handler.py\n",
"from typing import Dict, List, Any\n",
"from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor\n",
"import torch\n",
"from subprocess import run\n",
"\n",
"# install tesseract-ocr and pytesseract\n",
"run(\"apt install -y tesseract-ocr\", shell=True, check=True)\n",
"run(\"pip install pytesseract\", shell=True, check=True)\n",
"\n",
"# helper function to unnormalize bboxes for drawing onto the image\n",
"def unnormalize_box(bbox, width, height):\n",
" return [\n",
" width * (bbox[0] / 1000),\n",
" height * (bbox[1] / 1000),\n",
" width * (bbox[2] / 1000),\n",
" height * (bbox[3] / 1000),\n",
" ]\n",
"\n",
"\n",
"# set device\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"\n",
"class EndpointHandler:\n",
" def __init__(self, path=\"\"):\n",
" # load model and processor from path\n",
" self.model = LayoutLMForTokenClassification.from_pretrained(\"philschmid/layoutlm-funsd\").to(device)\n",
" self.processor = LayoutLMv2Processor.from_pretrained(\"philschmid/layoutlm-funsd\")\n",
"\n",
" def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:\n",
" \"\"\"\n",
" Args:\n",
" data (:obj:):\n",
" includes the deserialized image file as PIL.Image\n",
" \"\"\"\n",
" # process input\n",
" image = data.pop(\"inputs\", data)\n",
"\n",
" # process image\n",
" encoding = self.processor(image, return_tensors=\"pt\")\n",
"\n",
" # run prediction\n",
" with torch.inference_mode():\n",
" outputs = self.model(\n",
" input_ids=encoding.input_ids.to(device),\n",
" bbox=encoding.bbox.to(device),\n",
" attention_mask=encoding.attention_mask.to(device),\n",
" token_type_ids=encoding.token_type_ids.to(device),\n",
" )\n",
" predictions = outputs.logits.softmax(-1)\n",
"\n",
" # post process output\n",
" result = []\n",
" for item, inp_ids, bbox in zip(\n",
" predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()\n",
" ):\n",
" label = self.model.config.id2label[int(item.argmax().cpu())]\n",
" if label == \"O\":\n",
" continue\n",
" score = item.max().item()\n",
" text = self.processor.tokenizer.decode(inp_ids)\n",
" bbox = unnormalize_box(bbox.tolist(), image.width, image.height)\n",
" result.append({\"label\": label, \"score\": score, \"text\": text, \"bbox\": bbox})\n",
" return {\"predictions\": result}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"test custom pipeline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from handler import EndpointHandler\n",
"\n",
"my_handler = EndpointHandler(\".\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"import base64\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"import json\n",
"\n",
"# read image from disk\n",
"image = Image.open(\"invoice_example.png\")\n",
"request = {\"inputs\":image }\n",
"\n",
"# test the handler\n",
"pred = my_handler(request)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"from PIL import Image, ImageDraw, ImageFont\n",
"\n",
"\n",
"def draw_result(image,result):\n",
" label2color = {\n",
" \"B-HEADER\": \"blue\",\n",
" \"B-QUESTION\": \"red\",\n",
" \"B-ANSWER\": \"green\",\n",
" \"I-HEADER\": \"blue\",\n",
" \"I-QUESTION\": \"red\",\n",
" \"I-ANSWER\": \"green\",\n",
" }\n",
"\n",
"\n",
" # draw predictions over the image\n",
" draw = ImageDraw.Draw(image)\n",
" font = ImageFont.load_default()\n",
" for res in result:\n",
" draw.rectangle(res[\"bbox\"], outline=\"black\")\n",
" draw.rectangle(res[\"bbox\"], outline=label2color[res[\"label\"]])\n",
" draw.text((res[\"bbox\"][0] + 10, res[\"bbox\"][1] - 10), text=res[\"label\"], fill=label2color[res[\"label\"]], font=font)\n",
" return image\n",
"\n",
"draw_result(image,pred[\"predictions\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('dev': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|