|
--- |
|
tags: |
|
- generated_from_trainer |
|
- endpoints-template |
|
library_name: generic |
|
datasets: |
|
- funsd |
|
model-index: |
|
- name: layoutlm-funsd |
|
results: [] |
|
pipeline_tag: other |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlm-funsd |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0045 |
|
- Answer: {'precision': 0.7348314606741573, 'recall': 0.8084054388133498, 'f1': 0.7698646262507357, 'number': 809} |
|
- Header: {'precision': 0.44285714285714284, 'recall': 0.5210084033613446, 'f1': 0.47876447876447875, 'number': 119} |
|
- Question: {'precision': 0.8211009174311926, 'recall': 0.8403755868544601, 'f1': 0.8306264501160092, 'number': 1065} |
|
- Overall Precision: 0.7599 |
|
- Overall Recall: 0.8083 |
|
- Overall F1: 0.7866 |
|
- Overall Accuracy: 0.8106 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
## Deploy Model with Inference Endpoints |
|
|
|
Before we can get started, make sure you meet all of the following requirements: |
|
|
|
1. An Organization/User with an active plan and *WRITE* access to the model repository. |
|
2. Can access the UI: [https://ui.endpoints.huggingface.co](https://ui.endpoints.huggingface.co/endpoints) |
|
|
|
|
|
|
|
### 1. Deploy LayoutLM and Send requests |
|
|
|
In this tutorial, you will learn how to deploy a [LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm) to [Hugging Face Inference Endpoints](https://huggingface.co/inference-endpoints) and how you can integrate it via an API into your products. |
|
|
|
This tutorial is not covering how you create the custom handler for inference. If you want to learn how to create a custom Handler for Inference Endpoints, you can either checkout the [documentation](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) or go through [“Custom Inference with Hugging Face Inference Endpoints”](https://www.philschmid.de/custom-inference-handler) |
|
|
|
We are going to deploy [philschmid/layoutlm-funsd](https://huggingface.co/philschmid/layoutlm-funsd) which implements the following `handler.py` |
|
|
|
```python |
|
from typing import Dict, List, Any |
|
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor |
|
import torch |
|
from subprocess import run |
|
|
|
# install tesseract-ocr and pytesseract |
|
run("apt install -y tesseract-ocr", shell=True, check=True) |
|
run("pip install pytesseract", shell=True, check=True) |
|
|
|
# helper function to unnormalize bboxes for drawing onto the image |
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
# set device |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
# load model and processor from path |
|
self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device) |
|
self.processor = LayoutLMv2Processor.from_pretrained(path) |
|
|
|
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the deserialized image file as PIL.Image |
|
""" |
|
# process input |
|
image = data.pop("inputs", data) |
|
|
|
# process image |
|
encoding = self.processor(image, return_tensors="pt") |
|
|
|
# run prediction |
|
with torch.inference_mode(): |
|
outputs = self.model( |
|
input_ids=encoding.input_ids.to(device), |
|
bbox=encoding.bbox.to(device), |
|
attention_mask=encoding.attention_mask.to(device), |
|
token_type_ids=encoding.token_type_ids.to(device), |
|
) |
|
predictions = outputs.logits.softmax(-1) |
|
|
|
# post process output |
|
result = [] |
|
for item, inp_ids, bbox in zip( |
|
predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu() |
|
): |
|
label = self.model.config.id2label[int(item.argmax().cpu())] |
|
if label == "O": |
|
continue |
|
score = item.max().item() |
|
text = self.processor.tokenizer.decode(inp_ids) |
|
bbox = unnormalize_box(bbox.tolist(), image.width, image.height) |
|
result.append({"label": label, "score": score, "text": text, "bbox": bbox}) |
|
return {"predictions": result} |
|
``` |
|
|
|
### 2. Send HTTP request using Python |
|
|
|
Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use `requests` to send our requests. (make your you have it installed `pip install requests`) |
|
|
|
```python |
|
import json |
|
import requests as r |
|
import mimetypes |
|
|
|
ENDPOINT_URL="" # url of your endpoint |
|
HF_TOKEN="" # organization token where you deployed your endpoint |
|
|
|
def predict(path_to_image:str=None): |
|
with open(path_to_image, "rb") as i: |
|
b = i.read() |
|
headers= { |
|
"Authorization": f"Bearer {HF_TOKEN}", |
|
"Content-Type": mimetypes.guess_type(path_to_image)[0] |
|
} |
|
response = r.post(ENDPOINT_URL, headers=headers, data=b) |
|
return response.json() |
|
|
|
prediction = predict(path_to_image="path_to_your_image.png") |
|
|
|
print(prediction) |
|
# {'predictions': [{'label': 'I-ANSWER', 'score': 0.4823932945728302, 'text': '[CLS]', 'bbox': [0.0, 0.0, 0.0, 0.0]}, {'label': 'B-HEADER', 'score': 0.992474377155304, 'text': 'your', 'bbox': [1712.529, 181.203, 1859.949, 228.88799999999998]}, |
|
``` |
|
|
|
|
|
### 3. Draw result on image |
|
|
|
To get a better understanding of what the model predicted you can also draw the predictions on the provided image. |
|
|
|
```python |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
# draw results on image |
|
def draw_result(path_to_image,result): |
|
image = Image.open(path_to_image) |
|
label2color = { |
|
"B-HEADER": "blue", |
|
"B-QUESTION": "red", |
|
"B-ANSWER": "green", |
|
"I-HEADER": "blue", |
|
"I-QUESTION": "red", |
|
"I-ANSWER": "green", |
|
} |
|
|
|
# draw predictions over the image |
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
for res in result: |
|
draw.rectangle(res["bbox"], outline="black") |
|
draw.rectangle(res["bbox"], outline=label2color[res["label"]]) |
|
draw.text((res["bbox"][0] + 10, res["bbox"][1] - 10), text=res["label"], fill=label2color[res["label"]], font=font) |
|
return image |
|
|
|
draw_result("path_to_your_image.png", prediction["predictions"]) |
|
``` |