--- library_name: transformers language: - lg license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - yogera metrics: - wer model-index: - name: wav2vec2-bert results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yogera type: yogera metrics: - name: Wer type: wer value: 0.12906588824020016 --- # wav2vec2-bert This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Yogera dataset. It achieves the following results on the evaluation set: - Loss: 0.2157 - Wer: 0.1291 - Cer: 0.0296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6428 | 1.0 | 257 | 0.1958 | 0.2392 | 0.0488 | | 0.1608 | 2.0 | 514 | 0.1623 | 0.1868 | 0.0393 | | 0.1216 | 3.0 | 771 | 0.1471 | 0.1663 | 0.0368 | | 0.1001 | 4.0 | 1028 | 0.1483 | 0.1601 | 0.0351 | | 0.0859 | 5.0 | 1285 | 0.1471 | 0.1497 | 0.0332 | | 0.0742 | 6.0 | 1542 | 0.1478 | 0.1468 | 0.0315 | | 0.0641 | 7.0 | 1799 | 0.1642 | 0.1476 | 0.0326 | | 0.0544 | 8.0 | 2056 | 0.1520 | 0.1461 | 0.0322 | | 0.0489 | 9.0 | 2313 | 0.1596 | 0.1386 | 0.0312 | | 0.0452 | 10.0 | 2570 | 0.1521 | 0.1408 | 0.0320 | | 0.04 | 11.0 | 2827 | 0.1754 | 0.1395 | 0.0306 | | 0.0371 | 12.0 | 3084 | 0.1703 | 0.1405 | 0.0309 | | 0.0329 | 13.0 | 3341 | 0.1657 | 0.1447 | 0.0318 | | 0.0323 | 14.0 | 3598 | 0.1695 | 0.1327 | 0.0298 | | 0.0282 | 15.0 | 3855 | 0.1852 | 0.1356 | 0.0310 | | 0.0237 | 16.0 | 4112 | 0.1728 | 0.1399 | 0.0308 | | 0.0229 | 17.0 | 4369 | 0.1810 | 0.1301 | 0.0291 | | 0.02 | 18.0 | 4626 | 0.1781 | 0.1367 | 0.0304 | | 0.0204 | 19.0 | 4883 | 0.2039 | 0.1329 | 0.0293 | | 0.0186 | 20.0 | 5140 | 0.1929 | 0.1366 | 0.0302 | | 0.0164 | 21.0 | 5397 | 0.2022 | 0.1356 | 0.0301 | | 0.0154 | 22.0 | 5654 | 0.1787 | 0.1307 | 0.0293 | | 0.0127 | 23.0 | 5911 | 0.2086 | 0.1296 | 0.0290 | | 0.0129 | 24.0 | 6168 | 0.2094 | 0.1281 | 0.0287 | | 0.0108 | 25.0 | 6425 | 0.2148 | 0.1254 | 0.0280 | | 0.0122 | 26.0 | 6682 | 0.2091 | 0.1339 | 0.0305 | | 0.0106 | 27.0 | 6939 | 0.2030 | 0.1315 | 0.0295 | | 0.0102 | 28.0 | 7196 | 0.2092 | 0.1241 | 0.0282 | | 0.0088 | 29.0 | 7453 | 0.2078 | 0.1290 | 0.0287 | | 0.008 | 30.0 | 7710 | 0.2112 | 0.1298 | 0.0282 | | 0.0084 | 31.0 | 7967 | 0.1972 | 0.1305 | 0.0295 | | 0.0074 | 32.0 | 8224 | 0.2130 | 0.1337 | 0.0293 | | 0.0062 | 33.0 | 8481 | 0.2141 | 0.1308 | 0.0297 | | 0.0065 | 34.0 | 8738 | 0.2151 | 0.1319 | 0.0296 | | 0.0079 | 35.0 | 8995 | 0.2070 | 0.1253 | 0.0279 | | 0.0059 | 36.0 | 9252 | 0.2229 | 0.1267 | 0.0285 | | 0.0071 | 37.0 | 9509 | 0.2218 | 0.1295 | 0.0297 | | 0.0066 | 38.0 | 9766 | 0.2157 | 0.1291 | 0.0296 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1