--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: wolof-1-hour-wav2vec2-xls-r-google-fleurs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: wo_sn split: None args: wo_sn metrics: - name: Wer type: wer value: 1.0 --- [Visualize in Weights & Biases](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/ogk3j7c0) # wolof-1-hour-wav2vec2-xls-r-google-fleurs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 3.0203 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:---:|:---:| | 4.3753 | 25.0 | 200 | 3.0125 | 1.0 | 1.0 | | 3.003 | 50.0 | 400 | 3.0203 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.19.1