File size: 4,317 Bytes
812098d
9aba7c7
fcafedd
9aba7c7
 
fcafedd
 
812098d
 
 
 
 
 
 
 
71ea745
812098d
 
 
 
71ea745
 
812098d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f840e0
812098d
 
 
 
 
 
5f840e0
812098d
 
 
 
 
 
71ea745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812098d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: malayalam_combined_
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/krishnan-aravind/huggingface/runs/2ay2lri6)
# malayalam_combined_

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4789
- Wer: 0.4611

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 0.8401        | 0.2031 | 500   | 0.8498          | 0.7068 |
| 0.7367        | 0.4063 | 1000  | 0.7280          | 0.6183 |
| 0.6974        | 0.6094 | 1500  | 0.7055          | 0.6113 |
| 0.6493        | 0.8125 | 2000  | 0.6765          | 0.5989 |
| 0.5905        | 1.0156 | 2500  | 0.6521          | 0.5937 |
| 0.606         | 1.2188 | 3000  | 0.6192          | 0.5639 |
| 0.5601        | 1.4219 | 3500  | 0.6242          | 0.5526 |
| 0.5868        | 1.6250 | 4000  | 0.6118          | 0.5559 |
| 0.5792        | 1.8282 | 4500  | 0.5879          | 0.5523 |
| 0.554         | 2.0313 | 5000  | 0.5775          | 0.5501 |
| 0.505         | 2.2344 | 5500  | 0.5640          | 0.5466 |
| 0.5055        | 2.4375 | 6000  | 0.5668          | 0.5298 |
| 0.5228        | 2.6407 | 6500  | 0.5410          | 0.5178 |
| 0.5186        | 2.8438 | 7000  | 0.5785          | 0.5540 |
| 0.4811        | 3.0469 | 7500  | 0.5446          | 0.5408 |
| 0.4794        | 3.2501 | 8000  | 0.5333          | 0.5102 |
| 0.4952        | 3.4532 | 8500  | 0.5205          | 0.5135 |
| 0.4761        | 3.6563 | 9000  | 0.5218          | 0.5092 |
| 0.5079        | 3.8594 | 9500  | 0.5192          | 0.5166 |
| 0.4407        | 4.0626 | 10000 | 0.5207          | 0.5054 |
| 0.4711        | 4.2657 | 10500 | 0.5215          | 0.5086 |
| 0.4396        | 4.4688 | 11000 | 0.5289          | 0.5145 |
| 0.4667        | 4.6719 | 11500 | 0.5144          | 0.5015 |
| 0.4518        | 4.8751 | 12000 | 0.5222          | 0.5112 |
| 0.4211        | 5.0782 | 12500 | 0.5094          | 0.4897 |
| 0.43          | 5.2813 | 13000 | 0.5242          | 0.5011 |
| 0.4218        | 5.4845 | 13500 | 0.5132          | 0.4905 |
| 0.4279        | 5.6876 | 14000 | 0.5153          | 0.4883 |
| 0.4341        | 5.8907 | 14500 | 0.5321          | 0.4899 |
| 0.409         | 6.0938 | 15000 | 0.5079          | 0.4884 |
| 0.4111        | 6.2970 | 15500 | 0.5067          | 0.4844 |
| 0.3781        | 6.5001 | 16000 | 0.5091          | 0.4643 |
| 0.4274        | 6.7032 | 16500 | 0.4842          | 0.4831 |
| 0.4009        | 6.9064 | 17000 | 0.4791          | 0.4738 |
| 0.3895        | 7.1095 | 17500 | 0.4786          | 0.4691 |
| 0.3788        | 7.3126 | 18000 | 0.4845          | 0.4691 |
| 0.3909        | 7.5157 | 18500 | 0.4869          | 0.4612 |
| 0.3795        | 7.7189 | 19000 | 0.4729          | 0.4606 |
| 0.3874        | 7.9220 | 19500 | 0.4667          | 0.4655 |
| 0.3472        | 8.1251 | 20000 | 0.4718          | 0.4720 |
| 0.3634        | 8.3283 | 20500 | 0.4767          | 0.4616 |
| 0.3545        | 8.5314 | 21000 | 0.4821          | 0.4640 |
| 0.37          | 8.7345 | 21500 | 0.4789          | 0.4611 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 1.14.0a0+44dac51
- Datasets 2.16.1
- Tokenizers 0.19.1