File size: 2,648 Bytes
34ea21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: malayalam_combined_Conversation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/krishnan-aravind/huggingface/runs/pvq9zsxy)
# malayalam_combined_Conversation

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9570
- Wer: 0.6223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.3673        | 0.6177 | 500  | 1.3771          | 0.7996 |
| 1.1485        | 1.2353 | 1000 | 1.2069          | 0.7644 |
| 1.0712        | 1.8530 | 1500 | 1.1157          | 0.7296 |
| 1.0101        | 2.4707 | 2000 | 1.0969          | 0.7344 |
| 0.9326        | 3.0883 | 2500 | 1.0566          | 0.6889 |
| 0.8723        | 3.7060 | 3000 | 1.0339          | 0.6861 |
| 0.8198        | 4.3237 | 3500 | 1.0028          | 0.6830 |
| 0.8092        | 4.9413 | 4000 | 1.0108          | 0.6681 |
| 0.7574        | 5.5590 | 4500 | 1.0049          | 0.6676 |
| 0.7027        | 6.1767 | 5000 | 0.9725          | 0.6660 |
| 0.6981        | 6.7943 | 5500 | 0.9649          | 0.6653 |
| 0.6684        | 7.4120 | 6000 | 0.9500          | 0.6393 |
| 0.6295        | 8.0296 | 6500 | 0.9535          | 0.6364 |
| 0.5947        | 8.6473 | 7000 | 0.9522          | 0.6338 |
| 0.5483        | 9.2650 | 7500 | 0.9821          | 0.6262 |
| 0.5437        | 9.8826 | 8000 | 0.9570          | 0.6223 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 1.14.0a0+44dac51
- Datasets 2.16.1
- Tokenizers 0.19.1