File size: 2,735 Bytes
fb0d95f 2b4b012 fb0d95f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: music_class
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.95
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium.en-finetuned-gtzan
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2885
- Accuracy: 0.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 16
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7711 | 1.0 | 112 | 1.6556 | 0.52 |
| 0.5477 | 2.0 | 225 | 0.4738 | 0.85 |
| 0.535 | 3.0 | 337 | 0.3137 | 0.92 |
| 0.231 | 4.0 | 450 | 0.3613 | 0.9 |
| 0.1923 | 5.0 | 562 | 0.2885 | 0.95 |
| 0.0584 | 6.0 | 675 | 0.6531 | 0.86 |
| 0.1783 | 7.0 | 787 | 0.5717 | 0.9 |
| 0.0022 | 8.0 | 900 | 0.4205 | 0.91 |
| 0.1032 | 9.0 | 1012 | 0.4984 | 0.91 |
| 0.0011 | 10.0 | 1125 | 0.3778 | 0.94 |
| 0.0104 | 11.0 | 1237 | 0.3709 | 0.94 |
| 0.0011 | 12.0 | 1350 | 0.4564 | 0.92 |
| 0.0009 | 13.0 | 1462 | 0.3796 | 0.94 |
| 0.0008 | 14.0 | 1575 | 0.3880 | 0.94 |
| 0.0008 | 15.0 | 1687 | 0.3930 | 0.94 |
| 0.0008 | 15.93 | 1792 | 0.3955 | 0.94 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|