File size: 4,385 Bytes
78c0117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: cc-by-4.0
base_model: Helsinki-NLP/opus-mt-tc-big-en-ar
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Terjman-Large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Terjman-Large

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ar) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2078
- Bleu: 8.3292
- Gen Len: 34.4959

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 22
- eval_batch_size: 22
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 88
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 40

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
| No log        | 0.9982  | 407   | 4.3938          | 4.6056 | 22.6033 |
| 5.1616        | 1.9988  | 815   | 3.7257          | 5.8319 | 30.9201 |
| 3.902         | 2.9994  | 1223  | 3.5214          | 6.7311 | 32.9091 |
| 3.5737        | 4.0     | 1631  | 3.4204          | 7.3684 | 32.1433 |
| 3.4576        | 4.9982  | 2038  | 3.3562          | 7.8632 | 34.5399 |
| 3.4576        | 5.9988  | 2446  | 3.3151          | 7.9739 | 35.3278 |
| 3.3833        | 6.9994  | 2854  | 3.2884          | 8.0825 | 35.8292 |
| 3.3358        | 8.0     | 3262  | 3.2681          | 8.2765 | 34.5427 |
| 3.3069        | 8.9982  | 3669  | 3.2517          | 8.1019 | 33.584  |
| 3.2769        | 9.9988  | 4077  | 3.2404          | 8.106  | 33.3802 |
| 3.2769        | 10.9994 | 4485  | 3.2342          | 8.3037 | 33.303  |
| 3.2777        | 12.0    | 4893  | 3.2284          | 8.0674 | 33.3967 |
| 3.2476        | 12.9982 | 5300  | 3.2226          | 8.2883 | 33.8154 |
| 3.2611        | 13.9988 | 5708  | 3.2189          | 8.3537 | 34.0413 |
| 3.2511        | 14.9994 | 6116  | 3.2159          | 8.1365 | 34.5014 |
| 3.2437        | 16.0    | 6524  | 3.2140          | 8.3549 | 34.0606 |
| 3.2437        | 16.9982 | 6931  | 3.2131          | 8.2507 | 34.303  |
| 3.2498        | 17.9988 | 7339  | 3.2116          | 8.2928 | 33.9945 |
| 3.2341        | 18.9994 | 7747  | 3.2105          | 8.337  | 33.7052 |
| 3.2403        | 20.0    | 8155  | 3.2098          | 8.3179 | 34.3526 |
| 3.2229        | 20.9982 | 8562  | 3.2094          | 8.3848 | 34.2039 |
| 3.2229        | 21.9988 | 8970  | 3.2090          | 8.2042 | 34.6529 |
| 3.2379        | 22.9994 | 9378  | 3.2086          | 8.4227 | 34.0275 |
| 3.2257        | 24.0    | 9786  | 3.2082          | 8.3515 | 34.3306 |
| 3.2526        | 24.9982 | 10193 | 3.2085          | 8.4089 | 34.4986 |
| 3.2206        | 25.9988 | 10601 | 3.2082          | 8.476  | 34.6226 |
| 3.2288        | 26.9994 | 11009 | 3.2083          | 8.4452 | 33.697  |
| 3.2288        | 28.0    | 11417 | 3.2080          | 8.29   | 34.0331 |
| 3.2251        | 28.9982 | 11824 | 3.2080          | 8.35   | 34.2948 |
| 3.2302        | 29.9988 | 12232 | 3.2078          | 8.4408 | 33.416  |
| 3.21          | 30.9994 | 12640 | 3.2079          | 8.2934 | 34.0854 |
| 3.2271        | 32.0    | 13048 | 3.2079          | 8.4573 | 33.3912 |
| 3.2271        | 32.9982 | 13455 | 3.2078          | 8.4055 | 34.2452 |
| 3.2428        | 33.9988 | 13863 | 3.2079          | 8.5107 | 34.5152 |
| 3.2303        | 34.9994 | 14271 | 3.2080          | 8.3734 | 34.2562 |
| 3.2129        | 36.0    | 14679 | 3.2079          | 8.3193 | 34.4628 |
| 3.2119        | 36.9982 | 15086 | 3.2082          | 8.4122 | 34.2121 |
| 3.2119        | 37.9988 | 15494 | 3.2078          | 8.3585 | 33.8843 |
| 3.2445        | 38.9994 | 15902 | 3.2079          | 8.3968 | 34.6722 |
| 3.2356        | 39.9264 | 16280 | 3.2078          | 8.3292 | 34.4959 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1