File size: 6,115 Bytes
78c0117 aff104d 78c0117 1ca7c48 78c0117 1ca7c48 78c0117 1ca7c48 78c0117 3b3a6bb 1ca7c48 3b3a6bb 78c0117 1ca7c48 711e129 78c0117 711e129 1ca7c48 711e129 1ca7c48 711e129 1ca7c48 711e129 1ca7c48 78c0117 1ca7c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: cc-by-nc-4.0
base_model: Helsinki-NLP/opus-mt-tc-big-en-ar
metrics:
- bleu
datasets:
- atlasia/darija_english
model-index:
- name: Terjman-Large
results: []
language:
- ar
- en
---
# Terjman-Large (240M params)
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
It is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ar) on a the [darija_english](atlasia/darija_english) dataset enhanced with curated corpora ensuring high-quality and accurate translations.
It achieves the following results on the evaluation set:
- Loss: 3.2078
- Bleu: 8.3292
- Gen Len: 34.4959
The finetuning was conducted using a **A100-40GB** and took **23 hours**.
Try it out on our dedicated [Terjman-Large Space](https://huggingface.co/spaces/atlasia/Terjman-Large) 🤗
## Usage
Using our model for translation is simple and straightforward.
You can integrate it into your projects or workflows via the Hugging Face Transformers library.
Here's a basic example of how to use the model in Python:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Large")
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Large")
# Define your Moroccan Darija Arabizi text
input_text = "Your english text goes here."
# Tokenize the input text
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
# Perform translation
output_tokens = model.generate(**input_tokens)
# Decode the output tokens
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print("Translation:", output_text)
```
## Example
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
**Input**: "Hi my friend, can you tell me a joke in moroccan darija? I'd be happy to hear that from you!"
**Output**: "مرحبا صديقي، يمكن لك تقول لي نكتة في داريجا المغربية؟ سأكون سعيدا بسماعها منك!"
## Limiations
This version has some limitations mainly due to the Tokenizer.
We're currently collecting more data with the aim of continous improvements.
## Feedback
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 22
- eval_batch_size: 22
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 88
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 40
## Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
| No log | 0.9982 | 407 | 4.3938 | 4.6056 | 22.6033 |
| 5.1616 | 1.9988 | 815 | 3.7257 | 5.8319 | 30.9201 |
| 3.902 | 2.9994 | 1223 | 3.5214 | 6.7311 | 32.9091 |
| 3.5737 | 4.0 | 1631 | 3.4204 | 7.3684 | 32.1433 |
| 3.4576 | 4.9982 | 2038 | 3.3562 | 7.8632 | 34.5399 |
| 3.4576 | 5.9988 | 2446 | 3.3151 | 7.9739 | 35.3278 |
| 3.3833 | 6.9994 | 2854 | 3.2884 | 8.0825 | 35.8292 |
| 3.3358 | 8.0 | 3262 | 3.2681 | 8.2765 | 34.5427 |
| 3.3069 | 8.9982 | 3669 | 3.2517 | 8.1019 | 33.584 |
| 3.2769 | 9.9988 | 4077 | 3.2404 | 8.106 | 33.3802 |
| 3.2769 | 10.9994 | 4485 | 3.2342 | 8.3037 | 33.303 |
| 3.2777 | 12.0 | 4893 | 3.2284 | 8.0674 | 33.3967 |
| 3.2476 | 12.9982 | 5300 | 3.2226 | 8.2883 | 33.8154 |
| 3.2611 | 13.9988 | 5708 | 3.2189 | 8.3537 | 34.0413 |
| 3.2511 | 14.9994 | 6116 | 3.2159 | 8.1365 | 34.5014 |
| 3.2437 | 16.0 | 6524 | 3.2140 | 8.3549 | 34.0606 |
| 3.2437 | 16.9982 | 6931 | 3.2131 | 8.2507 | 34.303 |
| 3.2498 | 17.9988 | 7339 | 3.2116 | 8.2928 | 33.9945 |
| 3.2341 | 18.9994 | 7747 | 3.2105 | 8.337 | 33.7052 |
| 3.2403 | 20.0 | 8155 | 3.2098 | 8.3179 | 34.3526 |
| 3.2229 | 20.9982 | 8562 | 3.2094 | 8.3848 | 34.2039 |
| 3.2229 | 21.9988 | 8970 | 3.2090 | 8.2042 | 34.6529 |
| 3.2379 | 22.9994 | 9378 | 3.2086 | 8.4227 | 34.0275 |
| 3.2257 | 24.0 | 9786 | 3.2082 | 8.3515 | 34.3306 |
| 3.2526 | 24.9982 | 10193 | 3.2085 | 8.4089 | 34.4986 |
| 3.2206 | 25.9988 | 10601 | 3.2082 | 8.476 | 34.6226 |
| 3.2288 | 26.9994 | 11009 | 3.2083 | 8.4452 | 33.697 |
| 3.2288 | 28.0 | 11417 | 3.2080 | 8.29 | 34.0331 |
| 3.2251 | 28.9982 | 11824 | 3.2080 | 8.35 | 34.2948 |
| 3.2302 | 29.9988 | 12232 | 3.2078 | 8.4408 | 33.416 |
| 3.21 | 30.9994 | 12640 | 3.2079 | 8.2934 | 34.0854 |
| 3.2271 | 32.0 | 13048 | 3.2079 | 8.4573 | 33.3912 |
| 3.2271 | 32.9982 | 13455 | 3.2078 | 8.4055 | 34.2452 |
| 3.2428 | 33.9988 | 13863 | 3.2079 | 8.5107 | 34.5152 |
| 3.2303 | 34.9994 | 14271 | 3.2080 | 8.3734 | 34.2562 |
| 3.2129 | 36.0 | 14679 | 3.2079 | 8.3193 | 34.4628 |
| 3.2119 | 36.9982 | 15086 | 3.2082 | 8.4122 | 34.2121 |
| 3.2119 | 37.9988 | 15494 | 3.2078 | 8.3585 | 33.8843 |
| 3.2445 | 38.9994 | 15902 | 3.2079 | 8.3968 | 34.6722 |
| 3.2356 | 39.9264 | 16280 | 3.2078 | 8.3292 | 34.4959 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |