from typing import Dict, List, Any from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline import torch class EndpointHandler: def __init__(self, path=""): # Load model and processor from path self.model = AutoModelForSeq2SeqLM.from_pretrained(path) self.tokenizer = AutoTokenizer.from_pretrained(path) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:obj:): Includes the deserialized image file as PIL.Image """ # Process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # Preprocess input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids # Modify parameters to increase max_length if parameters is None: parameters = {} parameters['max_length'] = 512 # Set your desired max_length here parameters['min_length'] = 100 parameters['length_penalty'] = 2.0 parameters['num_beams'] = 10 parameters['early_stopping'] = True parameters['temperature'] = 0.0 parameters['top_k'] = 15 parameters['top_p'] = 0.8 # Generate output outputs = self.model.generate(input_ids, **parameters) # Postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]