gpt2-10var / README.md
augustocsc's picture
End of training
d4bf983
metadata
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
model-index:
  - name: gpt2-10var
    results: []

gpt2-10var

This model is a fine-tuned version of gpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
No log 0.04 200 0.2493
No log 0.08 400 0.3971
0.4919 0.12 600 0.6197
0.4919 0.16 800 0.5482
0.9307 0.2 1000 0.8619
0.9307 0.24 1200 0.5619
0.9307 0.28 1400 0.7757
1.6552 0.32 1600 0.5050
1.6552 0.36 1800 1.1518
1.1387 0.4 2000 1.0939
1.1387 0.44 2200 9.2829
1.1387 0.48 2400 0.2714
8.5966 0.52 2600 0.1263
8.5966 0.56 2800 0.1191
0.1233 0.6 3000 0.1161
0.1233 0.64 3200 0.1150
0.1233 0.67 3400 0.1145
0.1166 0.71 3600 0.1138
0.1166 0.75 3800 0.1135
0.1151 0.79 4000 0.1132
0.1151 0.83 4200 0.1130
0.1151 0.87 4400 0.1125
0.1131 0.91 4600 0.1122
0.1131 0.95 4800 0.1119
0.1132 0.99 5000 0.1116
0.1132 1.03 5200 0.1115
0.1132 1.07 5400 0.1115
0.1123 1.11 5600 0.1112
0.1123 1.15 5800 0.1111
0.1116 1.19 6000 0.1110
0.1116 1.23 6200 0.1110
0.1116 1.27 6400 0.1108
0.1132 1.31 6600 0.1107
0.1132 1.35 6800 0.1122
0.2039 1.39 7000 0.1110
0.2039 1.43 7200 0.1108
0.2039 1.47 7400 0.1106
0.1107 1.51 7600 0.1106
0.1107 1.55 7800 0.1105
0.1115 1.59 8000 0.1104
0.1115 1.63 8200 0.1104
0.1115 1.67 8400 0.1104
0.1106 1.71 8600 0.1104
0.1106 1.75 8800 0.1103
0.1092 1.79 9000 0.1103
0.1092 1.83 9200 0.1103
0.1092 1.87 9400 0.1102
0.111 1.91 9600 0.1102
0.111 1.94 9800 0.1102
0.1109 1.98 10000 0.1102

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3