File size: 3,092 Bytes
7dfa11e
 
 
 
 
 
 
 
cf10b45
 
 
 
 
1e4c20b
cf10b45
 
 
 
 
1e4c20b
cf10b45
1e4c20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
 
cf10b45
1e4c20b
cf10b45
1e4c20b
7dfa11e
 
 
 
 
dace771
7dfa11e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: autoevaluate-binary-classification
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: glue
      type: glue
      args: sst2
    metrics:
    - type: accuracy
      value: 0.8967889908256881
      name: Accuracy
    - type: accuracy
      value: 0.8967889908256881
      name: Accuracy
      verified: true
    - type: precision
      value: 0.8898678414096917
      name: Precision
      verified: true
    - type: recall
      value: 0.9099099099099099
      name: Recall
      verified: true
    - type: auc
      value: 0.967247621453229
      name: AUC
      verified: true
    - type: f1
      value: 0.8997772828507795
      name: F1
      verified: true
    - type: loss
      value: 0.30091655254364014
      name: loss
      verified: true
    - type: matthews_correlation
      value: 0.793630584795814
      name: matthews_correlation
      verified: true
    - type: accuracy
      value: 0.8967889908256881
      name: Accuracy
      verified: true
      verifyToken: '1234'
    - type: precision
      value: 0.8898678414096917
      name: Precision
      verified: true
      verifyToken: '1234'
    - type: recall
      value: 0.9099099099099099
      name: Recall
      verified: true
      verifyToken: '1234'
    - type: auc
      value: 0.967247621453229
      name: AUC
      verified: true
      verifyToken: '1234'
    - type: f1
      value: 0.8997772828507795
      name: F1
      verified: true
      verifyToken: '1234'
    - type: loss
      value: 0.30091655254364014
      name: loss
      verified: true
      verifyToken: '1234'
    - type: matthews_correlation
      value: 0.793630584795814
      name: matthews_correlation
      verified: true
      verifyToken: '1234'
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# binary-classification

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3009
- Accuracy: 0.8968

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.175         | 1.0   | 4210 | 0.3009          | 0.8968   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1