--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 23.9405 - task: name: Summarization type: summarization dataset: type: xsum name: xsum config: default split: test metrics: - name: ROUGE-1 type: rouge value: 18.0961 verified: true - name: ROUGE-2 type: rouge value: 3.3941 verified: true - name: ROUGE-L type: rouge value: 14.3571 verified: true - name: ROUGE-LSUM type: rouge value: 14.4809 verified: true --- # summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6690 - Rouge1: 23.9405 - Rouge2: 5.0879 - Rougel: 18.4981 - Rougelsum: 18.5032 - Gen Len: 18.7376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9249 | 0.08 | 1000 | 2.6690 | 23.9405 | 5.0879 | 18.4981 | 18.5032 | 18.7376 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1