File size: 8,217 Bytes
b5919c8 dabaf97 b5919c8 dd77503 b5919c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# Legal-HeBERT
Legal-HeBERT is a BERT model for Hebrew legal and legislative domains. It is intended to improve the legal NLP research and tools development in Hebrew. We release two versions of Legal-HeBERT. The first version is a fine-tuned model of [HeBERT](https://github.com/avichaychriqui/HeBERT) applied on legal and legislative documents. The second version uses [HeBERT](https://github.com/avichaychriqui/HeBERT)'s architecture guidlines to train a BERT model from scratch. <br>
We continue collecting legal data, examining different architectural designs, and performing tagged datasets and legal tasks for evaluating and to development of a Hebrew legal tools.
## Training Data
Our training datasets are:
| Name | Hebrew Description | Size (GB) | Documents | Sentences | Words | Notes |
|----------------------------------------------------------------------------------------------------------------------------------- |-------------------------------------------------------------------------- |----------- |----------- |------------ |------------- |----------------------------------------- |
| The Israeli Law Book | ספר החוקים הישראלי | 0.05 | 2338 | 293352 | 4851063 | |
| Judgments of the Supreme Court | מאגר פסקי הדין של בית המשפט העליון | 0.7 | 212348 | 5790138 | 79672415 | |
| custody courts | החלטות בתי הדין למשמורת | 2.46 | 169,708 | 8,555,893 | 213,050,492 | |
| Law memoranda, drafts of secondary legislation and drafts of support tests that have been distributed to the public for comment | תזכירי חוק, טיוטות חקיקת משנה וטיוטות מבחני תמיכה שהופצו להערות הציבור | 0.4 | 3,291 | 294,752 | 7,218,960 | |
| Supervisors of Land Registration judgments | מאגר פסקי דין של המפקחים על רישום המקרקעין | 0.02 | 559 | 67,639 | 1,785,446 | |
| Decisions of the Labor Court - Corona | מאגר החלטות בית הדין לעניין שירות התעסוקה – קורונה | 0.001 | 146 | 3505 | 60195 | |
| Decisions of the Israel Lands Council | החלטות מועצת מקרקעי ישראל | | 118 | 11283 | 162692 | aggregate file |
| Judgments of the Disciplinary Tribunal and the Israel Police Appeals Tribunal | פסקי דין של בית הדין למשמעת ובית הדין לערעורים של משטרת ישראל | 0.02 | 54 | 83724 | 1743419 | aggregate files |
| Disciplinary Appeals Committee in the Ministry of Health | ועדת ערר לדין משמעתי במשרד הבריאות | 0.004 | 252 | 21010 | 429807 | 465 files are scanned and didn't parser |
| Attorney General's Positions | מאגר התייצבויות היועץ המשפטי לממשלה | 0.008 | 281 | 32724 | 813877 | |
| Legal-Opinion of the Attorney General | מאגר חוות דעת היועץ המשפטי לממשלה | 0.002 | 44 | 7132 | 188053 | |
| | | | | | | |
| total | | 3.665 | 389,139 | 15,161,152 | 309,976,419 | |
We thank <b>Yair Gardin</b> for the referring to the governance data, <b>Elhanan Schwarts</b> for collecting and parsing The Israeli law book, and <b>Jonathan Schler</b> for collecting the judgments of the supreme court.
## Training process
* Vocabulary size: 50,000 tokens
* 4 epochs (1M steps±)
* lr=5e-5
* mlm_probability=0.15
* batch size = 32 (for each gpu)
* NVIDIA GeForce RTX 2080 TI + NVIDIA GeForce RTX 3090 (1 week training)
### Additional training settings:
<b>Fine-tuned [HeBERT](https://github.com/avichaychriqui/HeBERT) model:</b> The first eight layers were freezed (like [Lee et al. (2019)](https://arxiv.org/abs/1911.03090) suggest)<br>
<b>Legal-HeBERT trained from scratch:</b> The training process is similar to [HeBERT](https://github.com/avichaychriqui/HeBERT) and inspired by [Chalkidis et al. (2020)](https://arxiv.org/abs/2010.02559) <br>
## How to use
The models can be found in huggingface hub and can be fine-tunned to any down-stream task:
```
# !pip install transformers==4.14.1
from transformers import AutoTokenizer, AutoModel
model_name = 'avichr/Legal-heBERT_ft' # for the fine-tuned HeBERT model
model_name = 'avichr/Legal-heBERT' # for legal HeBERT model trained from scratch
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model=model_name,
)
fill_mask("הקורונה לקחה את [MASK] ולנו לא נשאר דבר.")
```
## Stay tuned!
We are still working on our models and the datasets. We will edit this page as we progress. We are open for collaborations.
## If you used this model please cite us as :
Chriqui, Avihay, Yahav, Inbal and Bar-Siman-Tov, Ittai, Legal HeBERT: A BERT-based NLP Model for Hebrew Legal, Judicial and Legislative Texts (June 27, 2022). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4147127
```
@article{chriqui2021hebert,
title={Legal HeBERT: A BERT-based NLP Model for Hebrew Legal, Judicial and Legislative Texts},
author={Chriqui, Avihay, Yahav, Inbal and Bar-Siman-Tov, Ittai},
journal={SSRN preprint:4147127},
year={2022}
}
```
## Contact us
[Avichay Chriqui](mailto:[email protected]), The Coller AI Lab <br>
[Inbal yahav](mailto:[email protected]), The Coller AI Lab <br>
[Ittai Bar-Siman-Tov](mailto:[email protected]), the BIU Innovation Lab for Law, Data-Science and Digital Ethics <br>
Thank you, תודה, شكرا <br>
|