avnishkr commited on
Commit
99829d8
1 Parent(s): f6f05a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -1
README.md CHANGED
@@ -19,4 +19,97 @@ tags:
19
  - QLoRA
20
  - LoRA
21
  - SFTTrainer
22
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  - QLoRA
20
  - LoRA
21
  - SFTTrainer
22
+ ---
23
+
24
+
25
+ ---
26
+ library_name: peft
27
+ datasets:
28
+ - squad
29
+ - tiiuae/falcon-refinedweb
30
+ language:
31
+ - en
32
+ tags:
33
+ - llms
34
+ - falcon-7b
35
+ - open source llms
36
+ - fine tuning llms
37
+ - QLoRA
38
+ - PEFT
39
+ - LoRA
40
+ ---
41
+
42
+ # 🚀 Falcon-7b-QueAns
43
+
44
+ Falcon-7b-QueAns is a chatbot-like model for Question and Answering. It was built by fine-tuning [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) on the [SQuAD](https://huggingface.co/datasets/squad) dataset. This repo only includes the QLoRA adapters from fine-tuning with 🤗's [peft](https://github.com/huggingface/peft) package.
45
+
46
+ ## Model Summary
47
+
48
+ - **Model Type:** Causal decoder-only
49
+ - **Language(s):** English
50
+ - **Base Model:** Falcon-7B (License: Apache 2.0)
51
+ - **Dataset:** [SQuAD](https://huggingface.co/datasets/squad) (License: cc-by-4.0)
52
+ - **License(s):** Apache 2.0 inherited from "Base Model" and "Dataset"
53
+
54
+
55
+ ## Why use Falcon-7B?
56
+
57
+ * **It outperforms comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
58
+ * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
59
+ * **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions.
60
+
61
+ ⚠️ **This is a finetuned version for specifically question and answering.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).
62
+
63
+ 🔥 **Looking for an even more powerful model?** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) is Falcon-7B's big brother!
64
+
65
+
66
+ ## Model Details
67
+
68
+ The model was fine-tuned in 4-bit precision using 🤗 `peft` adapters, `transformers`, and `bitsandbytes`. Training relied on a method called "Low Rank Adapters" ([LoRA](https://arxiv.org/pdf/2106.09685.pdf)), specifically the [QLoRA](https://arxiv.org/abs/2305.14314) variant. The run took approximately 4 hours and was executed on a workstation with a single T4 NVIDIA GPU with 15 GB of available memory. See attached [Colab Notebook] used to train the model.
69
+
70
+ ### Model Date
71
+
72
+ July 06, 2023
73
+
74
+
75
+ Open source falcon 7b large language model fine tuned on SQuAD dataset for question and answering.
76
+
77
+ QLoRA technique used for fine tuning the model on consumer grade GPU
78
+ SFTTrainer is also used.
79
+
80
+ Dataset used: SQuAD
81
+ Dataset Size: 87278
82
+ Training Steps: 500
83
+
84
+
85
+
86
+
87
+ ## Training procedure
88
+
89
+
90
+ The following `bitsandbytes` quantization config was used during training:
91
+ - load_in_8bit: True
92
+ - load_in_4bit: False
93
+ - llm_int8_threshold: 6.0
94
+ - llm_int8_skip_modules: None
95
+ - llm_int8_enable_fp32_cpu_offload: False
96
+ - llm_int8_has_fp16_weight: False
97
+ - bnb_4bit_quant_type: nf4
98
+ - bnb_4bit_use_double_quant: False
99
+ - bnb_4bit_compute_dtype: float16
100
+
101
+ The following `bitsandbytes` quantization config was used during training:
102
+ - load_in_8bit: True
103
+ - load_in_4bit: False
104
+ - llm_int8_threshold: 6.0
105
+ - llm_int8_skip_modules: None
106
+ - llm_int8_enable_fp32_cpu_offload: False
107
+ - llm_int8_has_fp16_weight: False
108
+ - bnb_4bit_quant_type: nf4
109
+ - bnb_4bit_use_double_quant: False
110
+ - bnb_4bit_compute_dtype: float16
111
+ ### Framework versions
112
+
113
+ - PEFT 0.4.0.dev0
114
+
115
+ - PEFT 0.4.0.dev0