avsolatorio
commited on
Commit
•
9b911f6
1
Parent(s):
3df2a88
Upload large model
Browse filesSigned-off-by: Aivin V. Solatorio <[email protected]>
- 1_Pooling/config.json +7 -0
- README.md +2682 -0
- commit-info.json +1 -0
- config.json +32 -0
- config_sentence_transformers.json +7 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,2685 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
license: mit
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- feature-extraction
|
9 |
+
- mteb
|
10 |
+
- sentence-similarity
|
11 |
+
- sentence-transformers
|
12 |
+
|
13 |
+
model-index:
|
14 |
+
- name: GIST-large-Embedding-v0
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: Classification
|
18 |
+
dataset:
|
19 |
+
type: mteb/amazon_counterfactual
|
20 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
21 |
+
config: en
|
22 |
+
split: test
|
23 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
+
metrics:
|
25 |
+
- type: accuracy
|
26 |
+
value: 75.5820895522388
|
27 |
+
- type: ap
|
28 |
+
value: 38.32190121241783
|
29 |
+
- type: f1
|
30 |
+
value: 69.44777155231054
|
31 |
+
- task:
|
32 |
+
type: Classification
|
33 |
+
dataset:
|
34 |
+
type: mteb/amazon_polarity
|
35 |
+
name: MTEB AmazonPolarityClassification
|
36 |
+
config: default
|
37 |
+
split: test
|
38 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
+
metrics:
|
40 |
+
- type: accuracy
|
41 |
+
value: 93.40514999999998
|
42 |
+
- type: ap
|
43 |
+
value: 90.2011565132406
|
44 |
+
- type: f1
|
45 |
+
value: 93.39486246843605
|
46 |
+
- task:
|
47 |
+
type: Classification
|
48 |
+
dataset:
|
49 |
+
type: mteb/amazon_reviews_multi
|
50 |
+
name: MTEB AmazonReviewsClassification (en)
|
51 |
+
config: en
|
52 |
+
split: test
|
53 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
+
metrics:
|
55 |
+
- type: accuracy
|
56 |
+
value: 49.05999999999999
|
57 |
+
- type: f1
|
58 |
+
value: 48.58702718571088
|
59 |
+
- task:
|
60 |
+
type: Retrieval
|
61 |
+
dataset:
|
62 |
+
type: arguana
|
63 |
+
name: MTEB ArguAna
|
64 |
+
config: default
|
65 |
+
split: test
|
66 |
+
revision: None
|
67 |
+
metrics:
|
68 |
+
- type: map_at_1
|
69 |
+
value: 38.407000000000004
|
70 |
+
- type: map_at_10
|
71 |
+
value: 54.822
|
72 |
+
- type: map_at_100
|
73 |
+
value: 55.387
|
74 |
+
- type: map_at_1000
|
75 |
+
value: 55.388999999999996
|
76 |
+
- type: map_at_3
|
77 |
+
value: 50.308
|
78 |
+
- type: map_at_5
|
79 |
+
value: 53.199
|
80 |
+
- type: mrr_at_1
|
81 |
+
value: 39.900000000000006
|
82 |
+
- type: mrr_at_10
|
83 |
+
value: 55.385
|
84 |
+
- type: mrr_at_100
|
85 |
+
value: 55.936
|
86 |
+
- type: mrr_at_1000
|
87 |
+
value: 55.93900000000001
|
88 |
+
- type: mrr_at_3
|
89 |
+
value: 50.853
|
90 |
+
- type: mrr_at_5
|
91 |
+
value: 53.738
|
92 |
+
- type: ndcg_at_1
|
93 |
+
value: 38.407000000000004
|
94 |
+
- type: ndcg_at_10
|
95 |
+
value: 63.38
|
96 |
+
- type: ndcg_at_100
|
97 |
+
value: 65.52900000000001
|
98 |
+
- type: ndcg_at_1000
|
99 |
+
value: 65.58800000000001
|
100 |
+
- type: ndcg_at_3
|
101 |
+
value: 54.26
|
102 |
+
- type: ndcg_at_5
|
103 |
+
value: 59.488
|
104 |
+
- type: precision_at_1
|
105 |
+
value: 38.407000000000004
|
106 |
+
- type: precision_at_10
|
107 |
+
value: 9.04
|
108 |
+
- type: precision_at_100
|
109 |
+
value: 0.992
|
110 |
+
- type: precision_at_1000
|
111 |
+
value: 0.1
|
112 |
+
- type: precision_at_3
|
113 |
+
value: 21.906
|
114 |
+
- type: precision_at_5
|
115 |
+
value: 15.690000000000001
|
116 |
+
- type: recall_at_1
|
117 |
+
value: 38.407000000000004
|
118 |
+
- type: recall_at_10
|
119 |
+
value: 90.398
|
120 |
+
- type: recall_at_100
|
121 |
+
value: 99.21799999999999
|
122 |
+
- type: recall_at_1000
|
123 |
+
value: 99.644
|
124 |
+
- type: recall_at_3
|
125 |
+
value: 65.718
|
126 |
+
- type: recall_at_5
|
127 |
+
value: 78.45
|
128 |
+
- task:
|
129 |
+
type: Clustering
|
130 |
+
dataset:
|
131 |
+
type: mteb/arxiv-clustering-p2p
|
132 |
+
name: MTEB ArxivClusteringP2P
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
136 |
+
metrics:
|
137 |
+
- type: v_measure
|
138 |
+
value: 48.49766333679089
|
139 |
+
- task:
|
140 |
+
type: Clustering
|
141 |
+
dataset:
|
142 |
+
type: mteb/arxiv-clustering-s2s
|
143 |
+
name: MTEB ArxivClusteringS2S
|
144 |
+
config: default
|
145 |
+
split: test
|
146 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
147 |
+
metrics:
|
148 |
+
- type: v_measure
|
149 |
+
value: 42.57731111438094
|
150 |
+
- task:
|
151 |
+
type: Reranking
|
152 |
+
dataset:
|
153 |
+
type: mteb/askubuntudupquestions-reranking
|
154 |
+
name: MTEB AskUbuntuDupQuestions
|
155 |
+
config: default
|
156 |
+
split: test
|
157 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
158 |
+
metrics:
|
159 |
+
- type: map
|
160 |
+
value: 64.70120072857361
|
161 |
+
- type: mrr
|
162 |
+
value: 77.86714593501297
|
163 |
+
- task:
|
164 |
+
type: STS
|
165 |
+
dataset:
|
166 |
+
type: mteb/biosses-sts
|
167 |
+
name: MTEB BIOSSES
|
168 |
+
config: default
|
169 |
+
split: test
|
170 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
171 |
+
metrics:
|
172 |
+
- type: cos_sim_pearson
|
173 |
+
value: 90.73821860690765
|
174 |
+
- type: cos_sim_spearman
|
175 |
+
value: 89.17070651383446
|
176 |
+
- type: euclidean_pearson
|
177 |
+
value: 88.28303958293029
|
178 |
+
- type: euclidean_spearman
|
179 |
+
value: 88.81889126856979
|
180 |
+
- type: manhattan_pearson
|
181 |
+
value: 88.09080621828731
|
182 |
+
- type: manhattan_spearman
|
183 |
+
value: 88.55924679817751
|
184 |
+
- task:
|
185 |
+
type: Classification
|
186 |
+
dataset:
|
187 |
+
type: mteb/banking77
|
188 |
+
name: MTEB Banking77Classification
|
189 |
+
config: default
|
190 |
+
split: test
|
191 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
192 |
+
metrics:
|
193 |
+
- type: accuracy
|
194 |
+
value: 88.10064935064933
|
195 |
+
- type: f1
|
196 |
+
value: 88.08460758973867
|
197 |
+
- task:
|
198 |
+
type: Clustering
|
199 |
+
dataset:
|
200 |
+
type: mteb/biorxiv-clustering-p2p
|
201 |
+
name: MTEB BiorxivClusteringP2P
|
202 |
+
config: default
|
203 |
+
split: test
|
204 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
205 |
+
metrics:
|
206 |
+
- type: v_measure
|
207 |
+
value: 39.338228337929976
|
208 |
+
- task:
|
209 |
+
type: Clustering
|
210 |
+
dataset:
|
211 |
+
type: mteb/biorxiv-clustering-s2s
|
212 |
+
name: MTEB BiorxivClusteringS2S
|
213 |
+
config: default
|
214 |
+
split: test
|
215 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
216 |
+
metrics:
|
217 |
+
- type: v_measure
|
218 |
+
value: 36.179156232378226
|
219 |
+
- task:
|
220 |
+
type: Retrieval
|
221 |
+
dataset:
|
222 |
+
type: BeIR/cqadupstack
|
223 |
+
name: MTEB CQADupstackAndroidRetrieval
|
224 |
+
config: default
|
225 |
+
split: test
|
226 |
+
revision: None
|
227 |
+
metrics:
|
228 |
+
- type: map_at_1
|
229 |
+
value: 33.440999999999995
|
230 |
+
- type: map_at_10
|
231 |
+
value: 45.495000000000005
|
232 |
+
- type: map_at_100
|
233 |
+
value: 47.132000000000005
|
234 |
+
- type: map_at_1000
|
235 |
+
value: 47.253
|
236 |
+
- type: map_at_3
|
237 |
+
value: 41.766
|
238 |
+
- type: map_at_5
|
239 |
+
value: 43.873
|
240 |
+
- type: mrr_at_1
|
241 |
+
value: 40.772999999999996
|
242 |
+
- type: mrr_at_10
|
243 |
+
value: 51.627
|
244 |
+
- type: mrr_at_100
|
245 |
+
value: 52.364
|
246 |
+
- type: mrr_at_1000
|
247 |
+
value: 52.397000000000006
|
248 |
+
- type: mrr_at_3
|
249 |
+
value: 48.951
|
250 |
+
- type: mrr_at_5
|
251 |
+
value: 50.746
|
252 |
+
- type: ndcg_at_1
|
253 |
+
value: 40.772999999999996
|
254 |
+
- type: ndcg_at_10
|
255 |
+
value: 52.306
|
256 |
+
- type: ndcg_at_100
|
257 |
+
value: 57.753
|
258 |
+
- type: ndcg_at_1000
|
259 |
+
value: 59.36900000000001
|
260 |
+
- type: ndcg_at_3
|
261 |
+
value: 47.177
|
262 |
+
- type: ndcg_at_5
|
263 |
+
value: 49.71
|
264 |
+
- type: precision_at_1
|
265 |
+
value: 40.772999999999996
|
266 |
+
- type: precision_at_10
|
267 |
+
value: 10.129000000000001
|
268 |
+
- type: precision_at_100
|
269 |
+
value: 1.617
|
270 |
+
- type: precision_at_1000
|
271 |
+
value: 0.208
|
272 |
+
- type: precision_at_3
|
273 |
+
value: 22.985
|
274 |
+
- type: precision_at_5
|
275 |
+
value: 16.652
|
276 |
+
- type: recall_at_1
|
277 |
+
value: 33.440999999999995
|
278 |
+
- type: recall_at_10
|
279 |
+
value: 65.121
|
280 |
+
- type: recall_at_100
|
281 |
+
value: 87.55199999999999
|
282 |
+
- type: recall_at_1000
|
283 |
+
value: 97.41300000000001
|
284 |
+
- type: recall_at_3
|
285 |
+
value: 49.958999999999996
|
286 |
+
- type: recall_at_5
|
287 |
+
value: 57.14900000000001
|
288 |
+
- task:
|
289 |
+
type: Retrieval
|
290 |
+
dataset:
|
291 |
+
type: BeIR/cqadupstack
|
292 |
+
name: MTEB CQADupstackEnglishRetrieval
|
293 |
+
config: default
|
294 |
+
split: test
|
295 |
+
revision: None
|
296 |
+
metrics:
|
297 |
+
- type: map_at_1
|
298 |
+
value: 32.126
|
299 |
+
- type: map_at_10
|
300 |
+
value: 42.856
|
301 |
+
- type: map_at_100
|
302 |
+
value: 44.134
|
303 |
+
- type: map_at_1000
|
304 |
+
value: 44.274
|
305 |
+
- type: map_at_3
|
306 |
+
value: 39.594
|
307 |
+
- type: map_at_5
|
308 |
+
value: 41.504999999999995
|
309 |
+
- type: mrr_at_1
|
310 |
+
value: 40.127
|
311 |
+
- type: mrr_at_10
|
312 |
+
value: 48.736000000000004
|
313 |
+
- type: mrr_at_100
|
314 |
+
value: 49.303999999999995
|
315 |
+
- type: mrr_at_1000
|
316 |
+
value: 49.356
|
317 |
+
- type: mrr_at_3
|
318 |
+
value: 46.263
|
319 |
+
- type: mrr_at_5
|
320 |
+
value: 47.878
|
321 |
+
- type: ndcg_at_1
|
322 |
+
value: 40.127
|
323 |
+
- type: ndcg_at_10
|
324 |
+
value: 48.695
|
325 |
+
- type: ndcg_at_100
|
326 |
+
value: 52.846000000000004
|
327 |
+
- type: ndcg_at_1000
|
328 |
+
value: 54.964
|
329 |
+
- type: ndcg_at_3
|
330 |
+
value: 44.275
|
331 |
+
- type: ndcg_at_5
|
332 |
+
value: 46.54
|
333 |
+
- type: precision_at_1
|
334 |
+
value: 40.127
|
335 |
+
- type: precision_at_10
|
336 |
+
value: 9.229
|
337 |
+
- type: precision_at_100
|
338 |
+
value: 1.473
|
339 |
+
- type: precision_at_1000
|
340 |
+
value: 0.19499999999999998
|
341 |
+
- type: precision_at_3
|
342 |
+
value: 21.444
|
343 |
+
- type: precision_at_5
|
344 |
+
value: 15.389
|
345 |
+
- type: recall_at_1
|
346 |
+
value: 32.126
|
347 |
+
- type: recall_at_10
|
348 |
+
value: 58.971
|
349 |
+
- type: recall_at_100
|
350 |
+
value: 76.115
|
351 |
+
- type: recall_at_1000
|
352 |
+
value: 89.556
|
353 |
+
- type: recall_at_3
|
354 |
+
value: 45.891
|
355 |
+
- type: recall_at_5
|
356 |
+
value: 52.242
|
357 |
+
- task:
|
358 |
+
type: Retrieval
|
359 |
+
dataset:
|
360 |
+
type: BeIR/cqadupstack
|
361 |
+
name: MTEB CQADupstackGamingRetrieval
|
362 |
+
config: default
|
363 |
+
split: test
|
364 |
+
revision: None
|
365 |
+
metrics:
|
366 |
+
- type: map_at_1
|
367 |
+
value: 41.312
|
368 |
+
- type: map_at_10
|
369 |
+
value: 54.510000000000005
|
370 |
+
- type: map_at_100
|
371 |
+
value: 55.544000000000004
|
372 |
+
- type: map_at_1000
|
373 |
+
value: 55.593
|
374 |
+
- type: map_at_3
|
375 |
+
value: 50.859
|
376 |
+
- type: map_at_5
|
377 |
+
value: 52.839999999999996
|
378 |
+
- type: mrr_at_1
|
379 |
+
value: 47.147
|
380 |
+
- type: mrr_at_10
|
381 |
+
value: 57.678
|
382 |
+
- type: mrr_at_100
|
383 |
+
value: 58.287
|
384 |
+
- type: mrr_at_1000
|
385 |
+
value: 58.312
|
386 |
+
- type: mrr_at_3
|
387 |
+
value: 55.025999999999996
|
388 |
+
- type: mrr_at_5
|
389 |
+
value: 56.55
|
390 |
+
- type: ndcg_at_1
|
391 |
+
value: 47.147
|
392 |
+
- type: ndcg_at_10
|
393 |
+
value: 60.672000000000004
|
394 |
+
- type: ndcg_at_100
|
395 |
+
value: 64.411
|
396 |
+
- type: ndcg_at_1000
|
397 |
+
value: 65.35499999999999
|
398 |
+
- type: ndcg_at_3
|
399 |
+
value: 54.643
|
400 |
+
- type: ndcg_at_5
|
401 |
+
value: 57.461
|
402 |
+
- type: precision_at_1
|
403 |
+
value: 47.147
|
404 |
+
- type: precision_at_10
|
405 |
+
value: 9.881
|
406 |
+
- type: precision_at_100
|
407 |
+
value: 1.27
|
408 |
+
- type: precision_at_1000
|
409 |
+
value: 0.13799999999999998
|
410 |
+
- type: precision_at_3
|
411 |
+
value: 24.556
|
412 |
+
- type: precision_at_5
|
413 |
+
value: 16.814999999999998
|
414 |
+
- type: recall_at_1
|
415 |
+
value: 41.312
|
416 |
+
- type: recall_at_10
|
417 |
+
value: 75.62299999999999
|
418 |
+
- type: recall_at_100
|
419 |
+
value: 91.388
|
420 |
+
- type: recall_at_1000
|
421 |
+
value: 98.08
|
422 |
+
- type: recall_at_3
|
423 |
+
value: 59.40299999999999
|
424 |
+
- type: recall_at_5
|
425 |
+
value: 66.43900000000001
|
426 |
+
- task:
|
427 |
+
type: Retrieval
|
428 |
+
dataset:
|
429 |
+
type: BeIR/cqadupstack
|
430 |
+
name: MTEB CQADupstackGisRetrieval
|
431 |
+
config: default
|
432 |
+
split: test
|
433 |
+
revision: None
|
434 |
+
metrics:
|
435 |
+
- type: map_at_1
|
436 |
+
value: 27.609
|
437 |
+
- type: map_at_10
|
438 |
+
value: 37.614
|
439 |
+
- type: map_at_100
|
440 |
+
value: 38.584
|
441 |
+
- type: map_at_1000
|
442 |
+
value: 38.652
|
443 |
+
- type: map_at_3
|
444 |
+
value: 34.731
|
445 |
+
- type: map_at_5
|
446 |
+
value: 36.308
|
447 |
+
- type: mrr_at_1
|
448 |
+
value: 29.944
|
449 |
+
- type: mrr_at_10
|
450 |
+
value: 39.829
|
451 |
+
- type: mrr_at_100
|
452 |
+
value: 40.659
|
453 |
+
- type: mrr_at_1000
|
454 |
+
value: 40.709
|
455 |
+
- type: mrr_at_3
|
456 |
+
value: 37.269000000000005
|
457 |
+
- type: mrr_at_5
|
458 |
+
value: 38.625
|
459 |
+
- type: ndcg_at_1
|
460 |
+
value: 29.944
|
461 |
+
- type: ndcg_at_10
|
462 |
+
value: 43.082
|
463 |
+
- type: ndcg_at_100
|
464 |
+
value: 47.857
|
465 |
+
- type: ndcg_at_1000
|
466 |
+
value: 49.612
|
467 |
+
- type: ndcg_at_3
|
468 |
+
value: 37.578
|
469 |
+
- type: ndcg_at_5
|
470 |
+
value: 40.135
|
471 |
+
- type: precision_at_1
|
472 |
+
value: 29.944
|
473 |
+
- type: precision_at_10
|
474 |
+
value: 6.678000000000001
|
475 |
+
- type: precision_at_100
|
476 |
+
value: 0.951
|
477 |
+
- type: precision_at_1000
|
478 |
+
value: 0.11399999999999999
|
479 |
+
- type: precision_at_3
|
480 |
+
value: 16.045
|
481 |
+
- type: precision_at_5
|
482 |
+
value: 11.073
|
483 |
+
- type: recall_at_1
|
484 |
+
value: 27.609
|
485 |
+
- type: recall_at_10
|
486 |
+
value: 57.718
|
487 |
+
- type: recall_at_100
|
488 |
+
value: 79.768
|
489 |
+
- type: recall_at_1000
|
490 |
+
value: 92.868
|
491 |
+
- type: recall_at_3
|
492 |
+
value: 42.876
|
493 |
+
- type: recall_at_5
|
494 |
+
value: 49.104
|
495 |
+
- task:
|
496 |
+
type: Retrieval
|
497 |
+
dataset:
|
498 |
+
type: BeIR/cqadupstack
|
499 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
500 |
+
config: default
|
501 |
+
split: test
|
502 |
+
revision: None
|
503 |
+
metrics:
|
504 |
+
- type: map_at_1
|
505 |
+
value: 18.071
|
506 |
+
- type: map_at_10
|
507 |
+
value: 27.471
|
508 |
+
- type: map_at_100
|
509 |
+
value: 28.71
|
510 |
+
- type: map_at_1000
|
511 |
+
value: 28.833
|
512 |
+
- type: map_at_3
|
513 |
+
value: 24.698
|
514 |
+
- type: map_at_5
|
515 |
+
value: 26.461000000000002
|
516 |
+
- type: mrr_at_1
|
517 |
+
value: 22.387999999999998
|
518 |
+
- type: mrr_at_10
|
519 |
+
value: 32.522
|
520 |
+
- type: mrr_at_100
|
521 |
+
value: 33.393
|
522 |
+
- type: mrr_at_1000
|
523 |
+
value: 33.455
|
524 |
+
- type: mrr_at_3
|
525 |
+
value: 29.830000000000002
|
526 |
+
- type: mrr_at_5
|
527 |
+
value: 31.472
|
528 |
+
- type: ndcg_at_1
|
529 |
+
value: 22.387999999999998
|
530 |
+
- type: ndcg_at_10
|
531 |
+
value: 33.278999999999996
|
532 |
+
- type: ndcg_at_100
|
533 |
+
value: 39.043
|
534 |
+
- type: ndcg_at_1000
|
535 |
+
value: 41.763
|
536 |
+
- type: ndcg_at_3
|
537 |
+
value: 28.310999999999996
|
538 |
+
- type: ndcg_at_5
|
539 |
+
value: 31.007
|
540 |
+
- type: precision_at_1
|
541 |
+
value: 22.387999999999998
|
542 |
+
- type: precision_at_10
|
543 |
+
value: 6.157
|
544 |
+
- type: precision_at_100
|
545 |
+
value: 1.042
|
546 |
+
- type: precision_at_1000
|
547 |
+
value: 0.14200000000000002
|
548 |
+
- type: precision_at_3
|
549 |
+
value: 13.972000000000001
|
550 |
+
- type: precision_at_5
|
551 |
+
value: 10.274
|
552 |
+
- type: recall_at_1
|
553 |
+
value: 18.071
|
554 |
+
- type: recall_at_10
|
555 |
+
value: 46.025
|
556 |
+
- type: recall_at_100
|
557 |
+
value: 71.153
|
558 |
+
- type: recall_at_1000
|
559 |
+
value: 90.232
|
560 |
+
- type: recall_at_3
|
561 |
+
value: 32.311
|
562 |
+
- type: recall_at_5
|
563 |
+
value: 39.296
|
564 |
+
- task:
|
565 |
+
type: Retrieval
|
566 |
+
dataset:
|
567 |
+
type: BeIR/cqadupstack
|
568 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
569 |
+
config: default
|
570 |
+
split: test
|
571 |
+
revision: None
|
572 |
+
metrics:
|
573 |
+
- type: map_at_1
|
574 |
+
value: 30.813000000000002
|
575 |
+
- type: map_at_10
|
576 |
+
value: 42.594
|
577 |
+
- type: map_at_100
|
578 |
+
value: 43.949
|
579 |
+
- type: map_at_1000
|
580 |
+
value: 44.052
|
581 |
+
- type: map_at_3
|
582 |
+
value: 39.1
|
583 |
+
- type: map_at_5
|
584 |
+
value: 41.111
|
585 |
+
- type: mrr_at_1
|
586 |
+
value: 37.824999999999996
|
587 |
+
- type: mrr_at_10
|
588 |
+
value: 48.06
|
589 |
+
- type: mrr_at_100
|
590 |
+
value: 48.91
|
591 |
+
- type: mrr_at_1000
|
592 |
+
value: 48.946
|
593 |
+
- type: mrr_at_3
|
594 |
+
value: 45.509
|
595 |
+
- type: mrr_at_5
|
596 |
+
value: 47.073
|
597 |
+
- type: ndcg_at_1
|
598 |
+
value: 37.824999999999996
|
599 |
+
- type: ndcg_at_10
|
600 |
+
value: 48.882
|
601 |
+
- type: ndcg_at_100
|
602 |
+
value: 54.330999999999996
|
603 |
+
- type: ndcg_at_1000
|
604 |
+
value: 56.120999999999995
|
605 |
+
- type: ndcg_at_3
|
606 |
+
value: 43.529
|
607 |
+
- type: ndcg_at_5
|
608 |
+
value: 46.217999999999996
|
609 |
+
- type: precision_at_1
|
610 |
+
value: 37.824999999999996
|
611 |
+
- type: precision_at_10
|
612 |
+
value: 8.845
|
613 |
+
- type: precision_at_100
|
614 |
+
value: 1.34
|
615 |
+
- type: precision_at_1000
|
616 |
+
value: 0.168
|
617 |
+
- type: precision_at_3
|
618 |
+
value: 20.757
|
619 |
+
- type: precision_at_5
|
620 |
+
value: 14.802999999999999
|
621 |
+
- type: recall_at_1
|
622 |
+
value: 30.813000000000002
|
623 |
+
- type: recall_at_10
|
624 |
+
value: 61.895999999999994
|
625 |
+
- type: recall_at_100
|
626 |
+
value: 84.513
|
627 |
+
- type: recall_at_1000
|
628 |
+
value: 95.817
|
629 |
+
- type: recall_at_3
|
630 |
+
value: 47.099000000000004
|
631 |
+
- type: recall_at_5
|
632 |
+
value: 54.031
|
633 |
+
- task:
|
634 |
+
type: Retrieval
|
635 |
+
dataset:
|
636 |
+
type: BeIR/cqadupstack
|
637 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
638 |
+
config: default
|
639 |
+
split: test
|
640 |
+
revision: None
|
641 |
+
metrics:
|
642 |
+
- type: map_at_1
|
643 |
+
value: 25.735999999999997
|
644 |
+
- type: map_at_10
|
645 |
+
value: 36.799
|
646 |
+
- type: map_at_100
|
647 |
+
value: 38.246
|
648 |
+
- type: map_at_1000
|
649 |
+
value: 38.353
|
650 |
+
- type: map_at_3
|
651 |
+
value: 33.133
|
652 |
+
- type: map_at_5
|
653 |
+
value: 34.954
|
654 |
+
- type: mrr_at_1
|
655 |
+
value: 31.849
|
656 |
+
- type: mrr_at_10
|
657 |
+
value: 41.928
|
658 |
+
- type: mrr_at_100
|
659 |
+
value: 42.846000000000004
|
660 |
+
- type: mrr_at_1000
|
661 |
+
value: 42.894
|
662 |
+
- type: mrr_at_3
|
663 |
+
value: 39.117000000000004
|
664 |
+
- type: mrr_at_5
|
665 |
+
value: 40.521
|
666 |
+
- type: ndcg_at_1
|
667 |
+
value: 31.849
|
668 |
+
- type: ndcg_at_10
|
669 |
+
value: 43.143
|
670 |
+
- type: ndcg_at_100
|
671 |
+
value: 48.963
|
672 |
+
- type: ndcg_at_1000
|
673 |
+
value: 51.041000000000004
|
674 |
+
- type: ndcg_at_3
|
675 |
+
value: 37.218
|
676 |
+
- type: ndcg_at_5
|
677 |
+
value: 39.542
|
678 |
+
- type: precision_at_1
|
679 |
+
value: 31.849
|
680 |
+
- type: precision_at_10
|
681 |
+
value: 8.231
|
682 |
+
- type: precision_at_100
|
683 |
+
value: 1.277
|
684 |
+
- type: precision_at_1000
|
685 |
+
value: 0.164
|
686 |
+
- type: precision_at_3
|
687 |
+
value: 18.037
|
688 |
+
- type: precision_at_5
|
689 |
+
value: 12.945
|
690 |
+
- type: recall_at_1
|
691 |
+
value: 25.735999999999997
|
692 |
+
- type: recall_at_10
|
693 |
+
value: 56.735
|
694 |
+
- type: recall_at_100
|
695 |
+
value: 81.04
|
696 |
+
- type: recall_at_1000
|
697 |
+
value: 94.845
|
698 |
+
- type: recall_at_3
|
699 |
+
value: 40.239999999999995
|
700 |
+
- type: recall_at_5
|
701 |
+
value: 46.378
|
702 |
+
- task:
|
703 |
+
type: Retrieval
|
704 |
+
dataset:
|
705 |
+
type: BeIR/cqadupstack
|
706 |
+
name: MTEB CQADupstackRetrieval
|
707 |
+
config: default
|
708 |
+
split: test
|
709 |
+
revision: None
|
710 |
+
metrics:
|
711 |
+
- type: map_at_1
|
712 |
+
value: 27.580333333333336
|
713 |
+
- type: map_at_10
|
714 |
+
value: 37.70558333333334
|
715 |
+
- type: map_at_100
|
716 |
+
value: 38.94941666666667
|
717 |
+
- type: map_at_1000
|
718 |
+
value: 39.062083333333334
|
719 |
+
- type: map_at_3
|
720 |
+
value: 34.63333333333334
|
721 |
+
- type: map_at_5
|
722 |
+
value: 36.35241666666666
|
723 |
+
- type: mrr_at_1
|
724 |
+
value: 32.64866666666667
|
725 |
+
- type: mrr_at_10
|
726 |
+
value: 42.018499999999996
|
727 |
+
- type: mrr_at_100
|
728 |
+
value: 42.83391666666666
|
729 |
+
- type: mrr_at_1000
|
730 |
+
value: 42.884166666666665
|
731 |
+
- type: mrr_at_3
|
732 |
+
value: 39.476499999999994
|
733 |
+
- type: mrr_at_5
|
734 |
+
value: 40.96983333333334
|
735 |
+
- type: ndcg_at_1
|
736 |
+
value: 32.64866666666667
|
737 |
+
- type: ndcg_at_10
|
738 |
+
value: 43.43866666666667
|
739 |
+
- type: ndcg_at_100
|
740 |
+
value: 48.569833333333335
|
741 |
+
- type: ndcg_at_1000
|
742 |
+
value: 50.6495
|
743 |
+
- type: ndcg_at_3
|
744 |
+
value: 38.327166666666656
|
745 |
+
- type: ndcg_at_5
|
746 |
+
value: 40.76941666666667
|
747 |
+
- type: precision_at_1
|
748 |
+
value: 32.64866666666667
|
749 |
+
- type: precision_at_10
|
750 |
+
value: 7.652333333333332
|
751 |
+
- type: precision_at_100
|
752 |
+
value: 1.2066666666666666
|
753 |
+
- type: precision_at_1000
|
754 |
+
value: 0.15841666666666668
|
755 |
+
- type: precision_at_3
|
756 |
+
value: 17.75108333333333
|
757 |
+
- type: precision_at_5
|
758 |
+
value: 12.641916666666669
|
759 |
+
- type: recall_at_1
|
760 |
+
value: 27.580333333333336
|
761 |
+
- type: recall_at_10
|
762 |
+
value: 56.02591666666667
|
763 |
+
- type: recall_at_100
|
764 |
+
value: 78.317
|
765 |
+
- type: recall_at_1000
|
766 |
+
value: 92.52608333333332
|
767 |
+
- type: recall_at_3
|
768 |
+
value: 41.84283333333333
|
769 |
+
- type: recall_at_5
|
770 |
+
value: 48.105666666666664
|
771 |
+
- task:
|
772 |
+
type: Retrieval
|
773 |
+
dataset:
|
774 |
+
type: BeIR/cqadupstack
|
775 |
+
name: MTEB CQADupstackStatsRetrieval
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: map_at_1
|
781 |
+
value: 27.876
|
782 |
+
- type: map_at_10
|
783 |
+
value: 34.521
|
784 |
+
- type: map_at_100
|
785 |
+
value: 35.581
|
786 |
+
- type: map_at_1000
|
787 |
+
value: 35.674
|
788 |
+
- type: map_at_3
|
789 |
+
value: 32.501000000000005
|
790 |
+
- type: map_at_5
|
791 |
+
value: 33.602
|
792 |
+
- type: mrr_at_1
|
793 |
+
value: 31.441999999999997
|
794 |
+
- type: mrr_at_10
|
795 |
+
value: 37.669999999999995
|
796 |
+
- type: mrr_at_100
|
797 |
+
value: 38.523
|
798 |
+
- type: mrr_at_1000
|
799 |
+
value: 38.59
|
800 |
+
- type: mrr_at_3
|
801 |
+
value: 35.762
|
802 |
+
- type: mrr_at_5
|
803 |
+
value: 36.812
|
804 |
+
- type: ndcg_at_1
|
805 |
+
value: 31.441999999999997
|
806 |
+
- type: ndcg_at_10
|
807 |
+
value: 38.46
|
808 |
+
- type: ndcg_at_100
|
809 |
+
value: 43.479
|
810 |
+
- type: ndcg_at_1000
|
811 |
+
value: 45.858
|
812 |
+
- type: ndcg_at_3
|
813 |
+
value: 34.668
|
814 |
+
- type: ndcg_at_5
|
815 |
+
value: 36.416
|
816 |
+
- type: precision_at_1
|
817 |
+
value: 31.441999999999997
|
818 |
+
- type: precision_at_10
|
819 |
+
value: 5.782
|
820 |
+
- type: precision_at_100
|
821 |
+
value: 0.91
|
822 |
+
- type: precision_at_1000
|
823 |
+
value: 0.11900000000000001
|
824 |
+
- type: precision_at_3
|
825 |
+
value: 14.417
|
826 |
+
- type: precision_at_5
|
827 |
+
value: 9.876999999999999
|
828 |
+
- type: recall_at_1
|
829 |
+
value: 27.876
|
830 |
+
- type: recall_at_10
|
831 |
+
value: 47.556
|
832 |
+
- type: recall_at_100
|
833 |
+
value: 70.39699999999999
|
834 |
+
- type: recall_at_1000
|
835 |
+
value: 87.969
|
836 |
+
- type: recall_at_3
|
837 |
+
value: 37.226
|
838 |
+
- type: recall_at_5
|
839 |
+
value: 41.43
|
840 |
+
- task:
|
841 |
+
type: Retrieval
|
842 |
+
dataset:
|
843 |
+
type: BeIR/cqadupstack
|
844 |
+
name: MTEB CQADupstackTexRetrieval
|
845 |
+
config: default
|
846 |
+
split: test
|
847 |
+
revision: None
|
848 |
+
metrics:
|
849 |
+
- type: map_at_1
|
850 |
+
value: 18.854000000000003
|
851 |
+
- type: map_at_10
|
852 |
+
value: 26.632
|
853 |
+
- type: map_at_100
|
854 |
+
value: 27.849
|
855 |
+
- type: map_at_1000
|
856 |
+
value: 27.977
|
857 |
+
- type: map_at_3
|
858 |
+
value: 24.089
|
859 |
+
- type: map_at_5
|
860 |
+
value: 25.477
|
861 |
+
- type: mrr_at_1
|
862 |
+
value: 22.987
|
863 |
+
- type: mrr_at_10
|
864 |
+
value: 30.781999999999996
|
865 |
+
- type: mrr_at_100
|
866 |
+
value: 31.746000000000002
|
867 |
+
- type: mrr_at_1000
|
868 |
+
value: 31.818
|
869 |
+
- type: mrr_at_3
|
870 |
+
value: 28.43
|
871 |
+
- type: mrr_at_5
|
872 |
+
value: 29.791
|
873 |
+
- type: ndcg_at_1
|
874 |
+
value: 22.987
|
875 |
+
- type: ndcg_at_10
|
876 |
+
value: 31.585
|
877 |
+
- type: ndcg_at_100
|
878 |
+
value: 37.32
|
879 |
+
- type: ndcg_at_1000
|
880 |
+
value: 40.072
|
881 |
+
- type: ndcg_at_3
|
882 |
+
value: 27.058
|
883 |
+
- type: ndcg_at_5
|
884 |
+
value: 29.137999999999998
|
885 |
+
- type: precision_at_1
|
886 |
+
value: 22.987
|
887 |
+
- type: precision_at_10
|
888 |
+
value: 5.76
|
889 |
+
- type: precision_at_100
|
890 |
+
value: 1.018
|
891 |
+
- type: precision_at_1000
|
892 |
+
value: 0.14400000000000002
|
893 |
+
- type: precision_at_3
|
894 |
+
value: 12.767000000000001
|
895 |
+
- type: precision_at_5
|
896 |
+
value: 9.257
|
897 |
+
- type: recall_at_1
|
898 |
+
value: 18.854000000000003
|
899 |
+
- type: recall_at_10
|
900 |
+
value: 42.349
|
901 |
+
- type: recall_at_100
|
902 |
+
value: 68.15299999999999
|
903 |
+
- type: recall_at_1000
|
904 |
+
value: 87.44
|
905 |
+
- type: recall_at_3
|
906 |
+
value: 29.715999999999998
|
907 |
+
- type: recall_at_5
|
908 |
+
value: 35.085
|
909 |
+
- task:
|
910 |
+
type: Retrieval
|
911 |
+
dataset:
|
912 |
+
type: BeIR/cqadupstack
|
913 |
+
name: MTEB CQADupstackUnixRetrieval
|
914 |
+
config: default
|
915 |
+
split: test
|
916 |
+
revision: None
|
917 |
+
metrics:
|
918 |
+
- type: map_at_1
|
919 |
+
value: 28.094
|
920 |
+
- type: map_at_10
|
921 |
+
value: 38.22
|
922 |
+
- type: map_at_100
|
923 |
+
value: 39.352
|
924 |
+
- type: map_at_1000
|
925 |
+
value: 39.452
|
926 |
+
- type: map_at_3
|
927 |
+
value: 35.339
|
928 |
+
- type: map_at_5
|
929 |
+
value: 36.78
|
930 |
+
- type: mrr_at_1
|
931 |
+
value: 33.022
|
932 |
+
- type: mrr_at_10
|
933 |
+
value: 42.466
|
934 |
+
- type: mrr_at_100
|
935 |
+
value: 43.3
|
936 |
+
- type: mrr_at_1000
|
937 |
+
value: 43.356
|
938 |
+
- type: mrr_at_3
|
939 |
+
value: 40.159
|
940 |
+
- type: mrr_at_5
|
941 |
+
value: 41.272999999999996
|
942 |
+
- type: ndcg_at_1
|
943 |
+
value: 33.022
|
944 |
+
- type: ndcg_at_10
|
945 |
+
value: 43.976
|
946 |
+
- type: ndcg_at_100
|
947 |
+
value: 49.008
|
948 |
+
- type: ndcg_at_1000
|
949 |
+
value: 51.154999999999994
|
950 |
+
- type: ndcg_at_3
|
951 |
+
value: 38.891
|
952 |
+
- type: ndcg_at_5
|
953 |
+
value: 40.897
|
954 |
+
- type: precision_at_1
|
955 |
+
value: 33.022
|
956 |
+
- type: precision_at_10
|
957 |
+
value: 7.396999999999999
|
958 |
+
- type: precision_at_100
|
959 |
+
value: 1.1199999999999999
|
960 |
+
- type: precision_at_1000
|
961 |
+
value: 0.14200000000000002
|
962 |
+
- type: precision_at_3
|
963 |
+
value: 17.724
|
964 |
+
- type: precision_at_5
|
965 |
+
value: 12.239
|
966 |
+
- type: recall_at_1
|
967 |
+
value: 28.094
|
968 |
+
- type: recall_at_10
|
969 |
+
value: 57.162
|
970 |
+
- type: recall_at_100
|
971 |
+
value: 78.636
|
972 |
+
- type: recall_at_1000
|
973 |
+
value: 93.376
|
974 |
+
- type: recall_at_3
|
975 |
+
value: 43.328
|
976 |
+
- type: recall_at_5
|
977 |
+
value: 48.252
|
978 |
+
- task:
|
979 |
+
type: Retrieval
|
980 |
+
dataset:
|
981 |
+
type: BeIR/cqadupstack
|
982 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
983 |
+
config: default
|
984 |
+
split: test
|
985 |
+
revision: None
|
986 |
+
metrics:
|
987 |
+
- type: map_at_1
|
988 |
+
value: 24.937
|
989 |
+
- type: map_at_10
|
990 |
+
value: 34.82
|
991 |
+
- type: map_at_100
|
992 |
+
value: 36.405
|
993 |
+
- type: map_at_1000
|
994 |
+
value: 36.626
|
995 |
+
- type: map_at_3
|
996 |
+
value: 31.548
|
997 |
+
- type: map_at_5
|
998 |
+
value: 33.355000000000004
|
999 |
+
- type: mrr_at_1
|
1000 |
+
value: 30.435000000000002
|
1001 |
+
- type: mrr_at_10
|
1002 |
+
value: 39.946
|
1003 |
+
- type: mrr_at_100
|
1004 |
+
value: 40.873
|
1005 |
+
- type: mrr_at_1000
|
1006 |
+
value: 40.910000000000004
|
1007 |
+
- type: mrr_at_3
|
1008 |
+
value: 37.088
|
1009 |
+
- type: mrr_at_5
|
1010 |
+
value: 38.808
|
1011 |
+
- type: ndcg_at_1
|
1012 |
+
value: 30.435000000000002
|
1013 |
+
- type: ndcg_at_10
|
1014 |
+
value: 41.25
|
1015 |
+
- type: ndcg_at_100
|
1016 |
+
value: 47.229
|
1017 |
+
- type: ndcg_at_1000
|
1018 |
+
value: 49.395
|
1019 |
+
- type: ndcg_at_3
|
1020 |
+
value: 35.801
|
1021 |
+
- type: ndcg_at_5
|
1022 |
+
value: 38.457
|
1023 |
+
- type: precision_at_1
|
1024 |
+
value: 30.435000000000002
|
1025 |
+
- type: precision_at_10
|
1026 |
+
value: 8.083
|
1027 |
+
- type: precision_at_100
|
1028 |
+
value: 1.601
|
1029 |
+
- type: precision_at_1000
|
1030 |
+
value: 0.247
|
1031 |
+
- type: precision_at_3
|
1032 |
+
value: 17.061999999999998
|
1033 |
+
- type: precision_at_5
|
1034 |
+
value: 12.767000000000001
|
1035 |
+
- type: recall_at_1
|
1036 |
+
value: 24.937
|
1037 |
+
- type: recall_at_10
|
1038 |
+
value: 53.905
|
1039 |
+
- type: recall_at_100
|
1040 |
+
value: 80.607
|
1041 |
+
- type: recall_at_1000
|
1042 |
+
value: 93.728
|
1043 |
+
- type: recall_at_3
|
1044 |
+
value: 38.446000000000005
|
1045 |
+
- type: recall_at_5
|
1046 |
+
value: 45.188
|
1047 |
+
- task:
|
1048 |
+
type: Retrieval
|
1049 |
+
dataset:
|
1050 |
+
type: BeIR/cqadupstack
|
1051 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1052 |
+
config: default
|
1053 |
+
split: test
|
1054 |
+
revision: None
|
1055 |
+
metrics:
|
1056 |
+
- type: map_at_1
|
1057 |
+
value: 22.095000000000002
|
1058 |
+
- type: map_at_10
|
1059 |
+
value: 30.935000000000002
|
1060 |
+
- type: map_at_100
|
1061 |
+
value: 31.907000000000004
|
1062 |
+
- type: map_at_1000
|
1063 |
+
value: 32.006
|
1064 |
+
- type: map_at_3
|
1065 |
+
value: 28.242
|
1066 |
+
- type: map_at_5
|
1067 |
+
value: 29.963
|
1068 |
+
- type: mrr_at_1
|
1069 |
+
value: 23.845
|
1070 |
+
- type: mrr_at_10
|
1071 |
+
value: 32.978
|
1072 |
+
- type: mrr_at_100
|
1073 |
+
value: 33.802
|
1074 |
+
- type: mrr_at_1000
|
1075 |
+
value: 33.867000000000004
|
1076 |
+
- type: mrr_at_3
|
1077 |
+
value: 30.314000000000004
|
1078 |
+
- type: mrr_at_5
|
1079 |
+
value: 32.089
|
1080 |
+
- type: ndcg_at_1
|
1081 |
+
value: 23.845
|
1082 |
+
- type: ndcg_at_10
|
1083 |
+
value: 35.934
|
1084 |
+
- type: ndcg_at_100
|
1085 |
+
value: 40.598
|
1086 |
+
- type: ndcg_at_1000
|
1087 |
+
value: 43.089
|
1088 |
+
- type: ndcg_at_3
|
1089 |
+
value: 30.776999999999997
|
1090 |
+
- type: ndcg_at_5
|
1091 |
+
value: 33.711999999999996
|
1092 |
+
- type: precision_at_1
|
1093 |
+
value: 23.845
|
1094 |
+
- type: precision_at_10
|
1095 |
+
value: 5.656
|
1096 |
+
- type: precision_at_100
|
1097 |
+
value: 0.861
|
1098 |
+
- type: precision_at_1000
|
1099 |
+
value: 0.12
|
1100 |
+
- type: precision_at_3
|
1101 |
+
value: 13.247
|
1102 |
+
- type: precision_at_5
|
1103 |
+
value: 9.612
|
1104 |
+
- type: recall_at_1
|
1105 |
+
value: 22.095000000000002
|
1106 |
+
- type: recall_at_10
|
1107 |
+
value: 49.25
|
1108 |
+
- type: recall_at_100
|
1109 |
+
value: 70.482
|
1110 |
+
- type: recall_at_1000
|
1111 |
+
value: 88.98899999999999
|
1112 |
+
- type: recall_at_3
|
1113 |
+
value: 35.619
|
1114 |
+
- type: recall_at_5
|
1115 |
+
value: 42.674
|
1116 |
+
- task:
|
1117 |
+
type: Retrieval
|
1118 |
+
dataset:
|
1119 |
+
type: climate-fever
|
1120 |
+
name: MTEB ClimateFEVER
|
1121 |
+
config: default
|
1122 |
+
split: test
|
1123 |
+
revision: None
|
1124 |
+
metrics:
|
1125 |
+
- type: map_at_1
|
1126 |
+
value: 14.154
|
1127 |
+
- type: map_at_10
|
1128 |
+
value: 24.654999999999998
|
1129 |
+
- type: map_at_100
|
1130 |
+
value: 26.723999999999997
|
1131 |
+
- type: map_at_1000
|
1132 |
+
value: 26.912000000000003
|
1133 |
+
- type: map_at_3
|
1134 |
+
value: 20.4
|
1135 |
+
- type: map_at_5
|
1136 |
+
value: 22.477
|
1137 |
+
- type: mrr_at_1
|
1138 |
+
value: 32.117000000000004
|
1139 |
+
- type: mrr_at_10
|
1140 |
+
value: 44.590999999999994
|
1141 |
+
- type: mrr_at_100
|
1142 |
+
value: 45.425
|
1143 |
+
- type: mrr_at_1000
|
1144 |
+
value: 45.456
|
1145 |
+
- type: mrr_at_3
|
1146 |
+
value: 41.281
|
1147 |
+
- type: mrr_at_5
|
1148 |
+
value: 43.219
|
1149 |
+
- type: ndcg_at_1
|
1150 |
+
value: 32.117000000000004
|
1151 |
+
- type: ndcg_at_10
|
1152 |
+
value: 33.994
|
1153 |
+
- type: ndcg_at_100
|
1154 |
+
value: 41.438
|
1155 |
+
- type: ndcg_at_1000
|
1156 |
+
value: 44.611000000000004
|
1157 |
+
- type: ndcg_at_3
|
1158 |
+
value: 27.816000000000003
|
1159 |
+
- type: ndcg_at_5
|
1160 |
+
value: 29.816
|
1161 |
+
- type: precision_at_1
|
1162 |
+
value: 32.117000000000004
|
1163 |
+
- type: precision_at_10
|
1164 |
+
value: 10.756
|
1165 |
+
- type: precision_at_100
|
1166 |
+
value: 1.8679999999999999
|
1167 |
+
- type: precision_at_1000
|
1168 |
+
value: 0.246
|
1169 |
+
- type: precision_at_3
|
1170 |
+
value: 20.803
|
1171 |
+
- type: precision_at_5
|
1172 |
+
value: 15.987000000000002
|
1173 |
+
- type: recall_at_1
|
1174 |
+
value: 14.154
|
1175 |
+
- type: recall_at_10
|
1176 |
+
value: 40.489999999999995
|
1177 |
+
- type: recall_at_100
|
1178 |
+
value: 65.635
|
1179 |
+
- type: recall_at_1000
|
1180 |
+
value: 83.276
|
1181 |
+
- type: recall_at_3
|
1182 |
+
value: 25.241000000000003
|
1183 |
+
- type: recall_at_5
|
1184 |
+
value: 31.211
|
1185 |
+
- task:
|
1186 |
+
type: Retrieval
|
1187 |
+
dataset:
|
1188 |
+
type: dbpedia-entity
|
1189 |
+
name: MTEB DBPedia
|
1190 |
+
config: default
|
1191 |
+
split: test
|
1192 |
+
revision: None
|
1193 |
+
metrics:
|
1194 |
+
- type: map_at_1
|
1195 |
+
value: 9.332
|
1196 |
+
- type: map_at_10
|
1197 |
+
value: 20.462
|
1198 |
+
- type: map_at_100
|
1199 |
+
value: 29.473
|
1200 |
+
- type: map_at_1000
|
1201 |
+
value: 31.215
|
1202 |
+
- type: map_at_3
|
1203 |
+
value: 14.466999999999999
|
1204 |
+
- type: map_at_5
|
1205 |
+
value: 16.922
|
1206 |
+
- type: mrr_at_1
|
1207 |
+
value: 69.5
|
1208 |
+
- type: mrr_at_10
|
1209 |
+
value: 77.039
|
1210 |
+
- type: mrr_at_100
|
1211 |
+
value: 77.265
|
1212 |
+
- type: mrr_at_1000
|
1213 |
+
value: 77.271
|
1214 |
+
- type: mrr_at_3
|
1215 |
+
value: 75.5
|
1216 |
+
- type: mrr_at_5
|
1217 |
+
value: 76.4
|
1218 |
+
- type: ndcg_at_1
|
1219 |
+
value: 57.125
|
1220 |
+
- type: ndcg_at_10
|
1221 |
+
value: 42.958
|
1222 |
+
- type: ndcg_at_100
|
1223 |
+
value: 48.396
|
1224 |
+
- type: ndcg_at_1000
|
1225 |
+
value: 55.897
|
1226 |
+
- type: ndcg_at_3
|
1227 |
+
value: 47.188
|
1228 |
+
- type: ndcg_at_5
|
1229 |
+
value: 44.376
|
1230 |
+
- type: precision_at_1
|
1231 |
+
value: 69.5
|
1232 |
+
- type: precision_at_10
|
1233 |
+
value: 34.5
|
1234 |
+
- type: precision_at_100
|
1235 |
+
value: 11.18
|
1236 |
+
- type: precision_at_1000
|
1237 |
+
value: 2.13
|
1238 |
+
- type: precision_at_3
|
1239 |
+
value: 51.083
|
1240 |
+
- type: precision_at_5
|
1241 |
+
value: 43.1
|
1242 |
+
- type: recall_at_1
|
1243 |
+
value: 9.332
|
1244 |
+
- type: recall_at_10
|
1245 |
+
value: 26.422
|
1246 |
+
- type: recall_at_100
|
1247 |
+
value: 56.098000000000006
|
1248 |
+
- type: recall_at_1000
|
1249 |
+
value: 79.66
|
1250 |
+
- type: recall_at_3
|
1251 |
+
value: 15.703
|
1252 |
+
- type: recall_at_5
|
1253 |
+
value: 19.644000000000002
|
1254 |
+
- task:
|
1255 |
+
type: Classification
|
1256 |
+
dataset:
|
1257 |
+
type: mteb/emotion
|
1258 |
+
name: MTEB EmotionClassification
|
1259 |
+
config: default
|
1260 |
+
split: test
|
1261 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
+
metrics:
|
1263 |
+
- type: accuracy
|
1264 |
+
value: 54.72
|
1265 |
+
- type: f1
|
1266 |
+
value: 49.67819606587526
|
1267 |
+
- task:
|
1268 |
+
type: Retrieval
|
1269 |
+
dataset:
|
1270 |
+
type: fever
|
1271 |
+
name: MTEB FEVER
|
1272 |
+
config: default
|
1273 |
+
split: test
|
1274 |
+
revision: None
|
1275 |
+
metrics:
|
1276 |
+
- type: map_at_1
|
1277 |
+
value: 74.97
|
1278 |
+
- type: map_at_10
|
1279 |
+
value: 82.956
|
1280 |
+
- type: map_at_100
|
1281 |
+
value: 83.193
|
1282 |
+
- type: map_at_1000
|
1283 |
+
value: 83.208
|
1284 |
+
- type: map_at_3
|
1285 |
+
value: 81.837
|
1286 |
+
- type: map_at_5
|
1287 |
+
value: 82.57
|
1288 |
+
- type: mrr_at_1
|
1289 |
+
value: 80.783
|
1290 |
+
- type: mrr_at_10
|
1291 |
+
value: 87.546
|
1292 |
+
- type: mrr_at_100
|
1293 |
+
value: 87.627
|
1294 |
+
- type: mrr_at_1000
|
1295 |
+
value: 87.63
|
1296 |
+
- type: mrr_at_3
|
1297 |
+
value: 86.79400000000001
|
1298 |
+
- type: mrr_at_5
|
1299 |
+
value: 87.32799999999999
|
1300 |
+
- type: ndcg_at_1
|
1301 |
+
value: 80.783
|
1302 |
+
- type: ndcg_at_10
|
1303 |
+
value: 86.54899999999999
|
1304 |
+
- type: ndcg_at_100
|
1305 |
+
value: 87.355
|
1306 |
+
- type: ndcg_at_1000
|
1307 |
+
value: 87.629
|
1308 |
+
- type: ndcg_at_3
|
1309 |
+
value: 84.82
|
1310 |
+
- type: ndcg_at_5
|
1311 |
+
value: 85.83800000000001
|
1312 |
+
- type: precision_at_1
|
1313 |
+
value: 80.783
|
1314 |
+
- type: precision_at_10
|
1315 |
+
value: 10.327
|
1316 |
+
- type: precision_at_100
|
1317 |
+
value: 1.094
|
1318 |
+
- type: precision_at_1000
|
1319 |
+
value: 0.11299999999999999
|
1320 |
+
- type: precision_at_3
|
1321 |
+
value: 32.218
|
1322 |
+
- type: precision_at_5
|
1323 |
+
value: 20.012
|
1324 |
+
- type: recall_at_1
|
1325 |
+
value: 74.97
|
1326 |
+
- type: recall_at_10
|
1327 |
+
value: 93.072
|
1328 |
+
- type: recall_at_100
|
1329 |
+
value: 96.218
|
1330 |
+
- type: recall_at_1000
|
1331 |
+
value: 97.991
|
1332 |
+
- type: recall_at_3
|
1333 |
+
value: 88.357
|
1334 |
+
- type: recall_at_5
|
1335 |
+
value: 90.983
|
1336 |
+
- task:
|
1337 |
+
type: Retrieval
|
1338 |
+
dataset:
|
1339 |
+
type: fiqa
|
1340 |
+
name: MTEB FiQA2018
|
1341 |
+
config: default
|
1342 |
+
split: test
|
1343 |
+
revision: None
|
1344 |
+
metrics:
|
1345 |
+
- type: map_at_1
|
1346 |
+
value: 21.12
|
1347 |
+
- type: map_at_10
|
1348 |
+
value: 35.908
|
1349 |
+
- type: map_at_100
|
1350 |
+
value: 37.895
|
1351 |
+
- type: map_at_1000
|
1352 |
+
value: 38.068000000000005
|
1353 |
+
- type: map_at_3
|
1354 |
+
value: 31.189
|
1355 |
+
- type: map_at_5
|
1356 |
+
value: 33.908
|
1357 |
+
- type: mrr_at_1
|
1358 |
+
value: 42.901
|
1359 |
+
- type: mrr_at_10
|
1360 |
+
value: 52.578
|
1361 |
+
- type: mrr_at_100
|
1362 |
+
value: 53.308
|
1363 |
+
- type: mrr_at_1000
|
1364 |
+
value: 53.342
|
1365 |
+
- type: mrr_at_3
|
1366 |
+
value: 50.385999999999996
|
1367 |
+
- type: mrr_at_5
|
1368 |
+
value: 51.62799999999999
|
1369 |
+
- type: ndcg_at_1
|
1370 |
+
value: 42.901
|
1371 |
+
- type: ndcg_at_10
|
1372 |
+
value: 44.302
|
1373 |
+
- type: ndcg_at_100
|
1374 |
+
value: 51.132999999999996
|
1375 |
+
- type: ndcg_at_1000
|
1376 |
+
value: 53.848
|
1377 |
+
- type: ndcg_at_3
|
1378 |
+
value: 40.464
|
1379 |
+
- type: ndcg_at_5
|
1380 |
+
value: 41.743
|
1381 |
+
- type: precision_at_1
|
1382 |
+
value: 42.901
|
1383 |
+
- type: precision_at_10
|
1384 |
+
value: 12.423
|
1385 |
+
- type: precision_at_100
|
1386 |
+
value: 1.968
|
1387 |
+
- type: precision_at_1000
|
1388 |
+
value: 0.246
|
1389 |
+
- type: precision_at_3
|
1390 |
+
value: 27.622999999999998
|
1391 |
+
- type: precision_at_5
|
1392 |
+
value: 20.278
|
1393 |
+
- type: recall_at_1
|
1394 |
+
value: 21.12
|
1395 |
+
- type: recall_at_10
|
1396 |
+
value: 52.091
|
1397 |
+
- type: recall_at_100
|
1398 |
+
value: 77.062
|
1399 |
+
- type: recall_at_1000
|
1400 |
+
value: 93.082
|
1401 |
+
- type: recall_at_3
|
1402 |
+
value: 37.223
|
1403 |
+
- type: recall_at_5
|
1404 |
+
value: 43.826
|
1405 |
+
- task:
|
1406 |
+
type: Retrieval
|
1407 |
+
dataset:
|
1408 |
+
type: hotpotqa
|
1409 |
+
name: MTEB HotpotQA
|
1410 |
+
config: default
|
1411 |
+
split: test
|
1412 |
+
revision: None
|
1413 |
+
metrics:
|
1414 |
+
- type: map_at_1
|
1415 |
+
value: 38.940000000000005
|
1416 |
+
- type: map_at_10
|
1417 |
+
value: 62.239999999999995
|
1418 |
+
- type: map_at_100
|
1419 |
+
value: 63.141000000000005
|
1420 |
+
- type: map_at_1000
|
1421 |
+
value: 63.205999999999996
|
1422 |
+
- type: map_at_3
|
1423 |
+
value: 58.738
|
1424 |
+
- type: map_at_5
|
1425 |
+
value: 60.924
|
1426 |
+
- type: mrr_at_1
|
1427 |
+
value: 77.88000000000001
|
1428 |
+
- type: mrr_at_10
|
1429 |
+
value: 83.7
|
1430 |
+
- type: mrr_at_100
|
1431 |
+
value: 83.882
|
1432 |
+
- type: mrr_at_1000
|
1433 |
+
value: 83.889
|
1434 |
+
- type: mrr_at_3
|
1435 |
+
value: 82.748
|
1436 |
+
- type: mrr_at_5
|
1437 |
+
value: 83.381
|
1438 |
+
- type: ndcg_at_1
|
1439 |
+
value: 77.88000000000001
|
1440 |
+
- type: ndcg_at_10
|
1441 |
+
value: 70.462
|
1442 |
+
- type: ndcg_at_100
|
1443 |
+
value: 73.564
|
1444 |
+
- type: ndcg_at_1000
|
1445 |
+
value: 74.78099999999999
|
1446 |
+
- type: ndcg_at_3
|
1447 |
+
value: 65.524
|
1448 |
+
- type: ndcg_at_5
|
1449 |
+
value: 68.282
|
1450 |
+
- type: precision_at_1
|
1451 |
+
value: 77.88000000000001
|
1452 |
+
- type: precision_at_10
|
1453 |
+
value: 14.81
|
1454 |
+
- type: precision_at_100
|
1455 |
+
value: 1.7229999999999999
|
1456 |
+
- type: precision_at_1000
|
1457 |
+
value: 0.188
|
1458 |
+
- type: precision_at_3
|
1459 |
+
value: 42.083999999999996
|
1460 |
+
- type: precision_at_5
|
1461 |
+
value: 27.43
|
1462 |
+
- type: recall_at_1
|
1463 |
+
value: 38.940000000000005
|
1464 |
+
- type: recall_at_10
|
1465 |
+
value: 74.051
|
1466 |
+
- type: recall_at_100
|
1467 |
+
value: 86.158
|
1468 |
+
- type: recall_at_1000
|
1469 |
+
value: 94.146
|
1470 |
+
- type: recall_at_3
|
1471 |
+
value: 63.126000000000005
|
1472 |
+
- type: recall_at_5
|
1473 |
+
value: 68.575
|
1474 |
+
- task:
|
1475 |
+
type: Classification
|
1476 |
+
dataset:
|
1477 |
+
type: mteb/imdb
|
1478 |
+
name: MTEB ImdbClassification
|
1479 |
+
config: default
|
1480 |
+
split: test
|
1481 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
+
metrics:
|
1483 |
+
- type: accuracy
|
1484 |
+
value: 91.23440000000001
|
1485 |
+
- type: ap
|
1486 |
+
value: 87.33490392265892
|
1487 |
+
- type: f1
|
1488 |
+
value: 91.21374626021836
|
1489 |
+
- task:
|
1490 |
+
type: Retrieval
|
1491 |
+
dataset:
|
1492 |
+
type: msmarco
|
1493 |
+
name: MTEB MSMARCO
|
1494 |
+
config: default
|
1495 |
+
split: dev
|
1496 |
+
revision: None
|
1497 |
+
metrics:
|
1498 |
+
- type: map_at_1
|
1499 |
+
value: 22.137999999999998
|
1500 |
+
- type: map_at_10
|
1501 |
+
value: 34.471000000000004
|
1502 |
+
- type: map_at_100
|
1503 |
+
value: 35.634
|
1504 |
+
- type: map_at_1000
|
1505 |
+
value: 35.685
|
1506 |
+
- type: map_at_3
|
1507 |
+
value: 30.587999999999997
|
1508 |
+
- type: map_at_5
|
1509 |
+
value: 32.812999999999995
|
1510 |
+
- type: mrr_at_1
|
1511 |
+
value: 22.736
|
1512 |
+
- type: mrr_at_10
|
1513 |
+
value: 35.092
|
1514 |
+
- type: mrr_at_100
|
1515 |
+
value: 36.193999999999996
|
1516 |
+
- type: mrr_at_1000
|
1517 |
+
value: 36.238
|
1518 |
+
- type: mrr_at_3
|
1519 |
+
value: 31.28
|
1520 |
+
- type: mrr_at_5
|
1521 |
+
value: 33.498
|
1522 |
+
- type: ndcg_at_1
|
1523 |
+
value: 22.736
|
1524 |
+
- type: ndcg_at_10
|
1525 |
+
value: 41.388999999999996
|
1526 |
+
- type: ndcg_at_100
|
1527 |
+
value: 46.967999999999996
|
1528 |
+
- type: ndcg_at_1000
|
1529 |
+
value: 48.178
|
1530 |
+
- type: ndcg_at_3
|
1531 |
+
value: 33.503
|
1532 |
+
- type: ndcg_at_5
|
1533 |
+
value: 37.484
|
1534 |
+
- type: precision_at_1
|
1535 |
+
value: 22.736
|
1536 |
+
- type: precision_at_10
|
1537 |
+
value: 6.54
|
1538 |
+
- type: precision_at_100
|
1539 |
+
value: 0.9339999999999999
|
1540 |
+
- type: precision_at_1000
|
1541 |
+
value: 0.104
|
1542 |
+
- type: precision_at_3
|
1543 |
+
value: 14.249999999999998
|
1544 |
+
- type: precision_at_5
|
1545 |
+
value: 10.562000000000001
|
1546 |
+
- type: recall_at_1
|
1547 |
+
value: 22.137999999999998
|
1548 |
+
- type: recall_at_10
|
1549 |
+
value: 62.629999999999995
|
1550 |
+
- type: recall_at_100
|
1551 |
+
value: 88.375
|
1552 |
+
- type: recall_at_1000
|
1553 |
+
value: 97.529
|
1554 |
+
- type: recall_at_3
|
1555 |
+
value: 41.245
|
1556 |
+
- type: recall_at_5
|
1557 |
+
value: 50.808
|
1558 |
+
- task:
|
1559 |
+
type: Classification
|
1560 |
+
dataset:
|
1561 |
+
type: mteb/mtop_domain
|
1562 |
+
name: MTEB MTOPDomainClassification (en)
|
1563 |
+
config: en
|
1564 |
+
split: test
|
1565 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
+
metrics:
|
1567 |
+
- type: accuracy
|
1568 |
+
value: 95.25079799361606
|
1569 |
+
- type: f1
|
1570 |
+
value: 95.00726023695032
|
1571 |
+
- task:
|
1572 |
+
type: Classification
|
1573 |
+
dataset:
|
1574 |
+
type: mteb/mtop_intent
|
1575 |
+
name: MTEB MTOPIntentClassification (en)
|
1576 |
+
config: en
|
1577 |
+
split: test
|
1578 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
+
metrics:
|
1580 |
+
- type: accuracy
|
1581 |
+
value: 78.23757409940721
|
1582 |
+
- type: f1
|
1583 |
+
value: 58.534958803195714
|
1584 |
+
- task:
|
1585 |
+
type: Classification
|
1586 |
+
dataset:
|
1587 |
+
type: mteb/amazon_massive_intent
|
1588 |
+
name: MTEB MassiveIntentClassification (en)
|
1589 |
+
config: en
|
1590 |
+
split: test
|
1591 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
+
metrics:
|
1593 |
+
- type: accuracy
|
1594 |
+
value: 76.20040349697378
|
1595 |
+
- type: f1
|
1596 |
+
value: 74.31261149784696
|
1597 |
+
- task:
|
1598 |
+
type: Classification
|
1599 |
+
dataset:
|
1600 |
+
type: mteb/amazon_massive_scenario
|
1601 |
+
name: MTEB MassiveScenarioClassification (en)
|
1602 |
+
config: en
|
1603 |
+
split: test
|
1604 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
+
metrics:
|
1606 |
+
- type: accuracy
|
1607 |
+
value: 79.35104236718227
|
1608 |
+
- type: f1
|
1609 |
+
value: 79.7373049864316
|
1610 |
+
- task:
|
1611 |
+
type: Clustering
|
1612 |
+
dataset:
|
1613 |
+
type: mteb/medrxiv-clustering-p2p
|
1614 |
+
name: MTEB MedrxivClusteringP2P
|
1615 |
+
config: default
|
1616 |
+
split: test
|
1617 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
+
metrics:
|
1619 |
+
- type: v_measure
|
1620 |
+
value: 34.478828180753126
|
1621 |
+
- task:
|
1622 |
+
type: Clustering
|
1623 |
+
dataset:
|
1624 |
+
type: mteb/medrxiv-clustering-s2s
|
1625 |
+
name: MTEB MedrxivClusteringS2S
|
1626 |
+
config: default
|
1627 |
+
split: test
|
1628 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
+
metrics:
|
1630 |
+
- type: v_measure
|
1631 |
+
value: 32.25696147904426
|
1632 |
+
- task:
|
1633 |
+
type: Reranking
|
1634 |
+
dataset:
|
1635 |
+
type: mteb/mind_small
|
1636 |
+
name: MTEB MindSmallReranking
|
1637 |
+
config: default
|
1638 |
+
split: test
|
1639 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
+
metrics:
|
1641 |
+
- type: map
|
1642 |
+
value: 32.82488548405117
|
1643 |
+
- type: mrr
|
1644 |
+
value: 34.066706809031096
|
1645 |
+
- task:
|
1646 |
+
type: Retrieval
|
1647 |
+
dataset:
|
1648 |
+
type: nfcorpus
|
1649 |
+
name: MTEB NFCorpus
|
1650 |
+
config: default
|
1651 |
+
split: test
|
1652 |
+
revision: None
|
1653 |
+
metrics:
|
1654 |
+
- type: map_at_1
|
1655 |
+
value: 6.557
|
1656 |
+
- type: map_at_10
|
1657 |
+
value: 15.055
|
1658 |
+
- type: map_at_100
|
1659 |
+
value: 19.575
|
1660 |
+
- type: map_at_1000
|
1661 |
+
value: 21.267
|
1662 |
+
- type: map_at_3
|
1663 |
+
value: 10.86
|
1664 |
+
- type: map_at_5
|
1665 |
+
value: 12.83
|
1666 |
+
- type: mrr_at_1
|
1667 |
+
value: 50.464
|
1668 |
+
- type: mrr_at_10
|
1669 |
+
value: 59.050999999999995
|
1670 |
+
- type: mrr_at_100
|
1671 |
+
value: 59.436
|
1672 |
+
- type: mrr_at_1000
|
1673 |
+
value: 59.476
|
1674 |
+
- type: mrr_at_3
|
1675 |
+
value: 56.811
|
1676 |
+
- type: mrr_at_5
|
1677 |
+
value: 58.08
|
1678 |
+
- type: ndcg_at_1
|
1679 |
+
value: 47.988
|
1680 |
+
- type: ndcg_at_10
|
1681 |
+
value: 38.645
|
1682 |
+
- type: ndcg_at_100
|
1683 |
+
value: 36.339
|
1684 |
+
- type: ndcg_at_1000
|
1685 |
+
value: 45.279
|
1686 |
+
- type: ndcg_at_3
|
1687 |
+
value: 43.35
|
1688 |
+
- type: ndcg_at_5
|
1689 |
+
value: 41.564
|
1690 |
+
- type: precision_at_1
|
1691 |
+
value: 49.845
|
1692 |
+
- type: precision_at_10
|
1693 |
+
value: 28.544999999999998
|
1694 |
+
- type: precision_at_100
|
1695 |
+
value: 9.322
|
1696 |
+
- type: precision_at_1000
|
1697 |
+
value: 2.258
|
1698 |
+
- type: precision_at_3
|
1699 |
+
value: 40.144000000000005
|
1700 |
+
- type: precision_at_5
|
1701 |
+
value: 35.913000000000004
|
1702 |
+
- type: recall_at_1
|
1703 |
+
value: 6.557
|
1704 |
+
- type: recall_at_10
|
1705 |
+
value: 19.5
|
1706 |
+
- type: recall_at_100
|
1707 |
+
value: 37.153999999999996
|
1708 |
+
- type: recall_at_1000
|
1709 |
+
value: 69.581
|
1710 |
+
- type: recall_at_3
|
1711 |
+
value: 12.133
|
1712 |
+
- type: recall_at_5
|
1713 |
+
value: 15.43
|
1714 |
+
- task:
|
1715 |
+
type: Retrieval
|
1716 |
+
dataset:
|
1717 |
+
type: nq
|
1718 |
+
name: MTEB NQ
|
1719 |
+
config: default
|
1720 |
+
split: test
|
1721 |
+
revision: None
|
1722 |
+
metrics:
|
1723 |
+
- type: map_at_1
|
1724 |
+
value: 31.740000000000002
|
1725 |
+
- type: map_at_10
|
1726 |
+
value: 48.150999999999996
|
1727 |
+
- type: map_at_100
|
1728 |
+
value: 49.125
|
1729 |
+
- type: map_at_1000
|
1730 |
+
value: 49.149
|
1731 |
+
- type: map_at_3
|
1732 |
+
value: 43.645
|
1733 |
+
- type: map_at_5
|
1734 |
+
value: 46.417
|
1735 |
+
- type: mrr_at_1
|
1736 |
+
value: 35.892
|
1737 |
+
- type: mrr_at_10
|
1738 |
+
value: 50.524
|
1739 |
+
- type: mrr_at_100
|
1740 |
+
value: 51.232
|
1741 |
+
- type: mrr_at_1000
|
1742 |
+
value: 51.24999999999999
|
1743 |
+
- type: mrr_at_3
|
1744 |
+
value: 46.852
|
1745 |
+
- type: mrr_at_5
|
1746 |
+
value: 49.146
|
1747 |
+
- type: ndcg_at_1
|
1748 |
+
value: 35.892
|
1749 |
+
- type: ndcg_at_10
|
1750 |
+
value: 56.08800000000001
|
1751 |
+
- type: ndcg_at_100
|
1752 |
+
value: 60.077000000000005
|
1753 |
+
- type: ndcg_at_1000
|
1754 |
+
value: 60.632
|
1755 |
+
- type: ndcg_at_3
|
1756 |
+
value: 47.765
|
1757 |
+
- type: ndcg_at_5
|
1758 |
+
value: 52.322
|
1759 |
+
- type: precision_at_1
|
1760 |
+
value: 35.892
|
1761 |
+
- type: precision_at_10
|
1762 |
+
value: 9.296
|
1763 |
+
- type: precision_at_100
|
1764 |
+
value: 1.154
|
1765 |
+
- type: precision_at_1000
|
1766 |
+
value: 0.12
|
1767 |
+
- type: precision_at_3
|
1768 |
+
value: 21.92
|
1769 |
+
- type: precision_at_5
|
1770 |
+
value: 15.781999999999998
|
1771 |
+
- type: recall_at_1
|
1772 |
+
value: 31.740000000000002
|
1773 |
+
- type: recall_at_10
|
1774 |
+
value: 77.725
|
1775 |
+
- type: recall_at_100
|
1776 |
+
value: 94.841
|
1777 |
+
- type: recall_at_1000
|
1778 |
+
value: 99.003
|
1779 |
+
- type: recall_at_3
|
1780 |
+
value: 56.407
|
1781 |
+
- type: recall_at_5
|
1782 |
+
value: 66.848
|
1783 |
+
- task:
|
1784 |
+
type: Retrieval
|
1785 |
+
dataset:
|
1786 |
+
type: quora
|
1787 |
+
name: MTEB QuoraRetrieval
|
1788 |
+
config: default
|
1789 |
+
split: test
|
1790 |
+
revision: None
|
1791 |
+
metrics:
|
1792 |
+
- type: map_at_1
|
1793 |
+
value: 71.429
|
1794 |
+
- type: map_at_10
|
1795 |
+
value: 85.42699999999999
|
1796 |
+
- type: map_at_100
|
1797 |
+
value: 86.063
|
1798 |
+
- type: map_at_1000
|
1799 |
+
value: 86.077
|
1800 |
+
- type: map_at_3
|
1801 |
+
value: 82.573
|
1802 |
+
- type: map_at_5
|
1803 |
+
value: 84.371
|
1804 |
+
- type: mrr_at_1
|
1805 |
+
value: 82.34
|
1806 |
+
- type: mrr_at_10
|
1807 |
+
value: 88.247
|
1808 |
+
- type: mrr_at_100
|
1809 |
+
value: 88.357
|
1810 |
+
- type: mrr_at_1000
|
1811 |
+
value: 88.357
|
1812 |
+
- type: mrr_at_3
|
1813 |
+
value: 87.38
|
1814 |
+
- type: mrr_at_5
|
1815 |
+
value: 87.981
|
1816 |
+
- type: ndcg_at_1
|
1817 |
+
value: 82.34
|
1818 |
+
- type: ndcg_at_10
|
1819 |
+
value: 88.979
|
1820 |
+
- type: ndcg_at_100
|
1821 |
+
value: 90.18599999999999
|
1822 |
+
- type: ndcg_at_1000
|
1823 |
+
value: 90.254
|
1824 |
+
- type: ndcg_at_3
|
1825 |
+
value: 86.378
|
1826 |
+
- type: ndcg_at_5
|
1827 |
+
value: 87.821
|
1828 |
+
- type: precision_at_1
|
1829 |
+
value: 82.34
|
1830 |
+
- type: precision_at_10
|
1831 |
+
value: 13.482
|
1832 |
+
- type: precision_at_100
|
1833 |
+
value: 1.537
|
1834 |
+
- type: precision_at_1000
|
1835 |
+
value: 0.157
|
1836 |
+
- type: precision_at_3
|
1837 |
+
value: 37.852999999999994
|
1838 |
+
- type: precision_at_5
|
1839 |
+
value: 24.798000000000002
|
1840 |
+
- type: recall_at_1
|
1841 |
+
value: 71.429
|
1842 |
+
- type: recall_at_10
|
1843 |
+
value: 95.64099999999999
|
1844 |
+
- type: recall_at_100
|
1845 |
+
value: 99.723
|
1846 |
+
- type: recall_at_1000
|
1847 |
+
value: 99.98
|
1848 |
+
- type: recall_at_3
|
1849 |
+
value: 88.011
|
1850 |
+
- type: recall_at_5
|
1851 |
+
value: 92.246
|
1852 |
+
- task:
|
1853 |
+
type: Clustering
|
1854 |
+
dataset:
|
1855 |
+
type: mteb/reddit-clustering
|
1856 |
+
name: MTEB RedditClustering
|
1857 |
+
config: default
|
1858 |
+
split: test
|
1859 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
+
metrics:
|
1861 |
+
- type: v_measure
|
1862 |
+
value: 60.62148584103299
|
1863 |
+
- task:
|
1864 |
+
type: Clustering
|
1865 |
+
dataset:
|
1866 |
+
type: mteb/reddit-clustering-p2p
|
1867 |
+
name: MTEB RedditClusteringP2P
|
1868 |
+
config: default
|
1869 |
+
split: test
|
1870 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
+
metrics:
|
1872 |
+
- type: v_measure
|
1873 |
+
value: 63.2923987272903
|
1874 |
+
- task:
|
1875 |
+
type: Retrieval
|
1876 |
+
dataset:
|
1877 |
+
type: scidocs
|
1878 |
+
name: MTEB SCIDOCS
|
1879 |
+
config: default
|
1880 |
+
split: test
|
1881 |
+
revision: None
|
1882 |
+
metrics:
|
1883 |
+
- type: map_at_1
|
1884 |
+
value: 5.128
|
1885 |
+
- type: map_at_10
|
1886 |
+
value: 14.63
|
1887 |
+
- type: map_at_100
|
1888 |
+
value: 17.285
|
1889 |
+
- type: map_at_1000
|
1890 |
+
value: 17.676
|
1891 |
+
- type: map_at_3
|
1892 |
+
value: 9.993
|
1893 |
+
- type: map_at_5
|
1894 |
+
value: 12.286999999999999
|
1895 |
+
- type: mrr_at_1
|
1896 |
+
value: 25.4
|
1897 |
+
- type: mrr_at_10
|
1898 |
+
value: 38.423
|
1899 |
+
- type: mrr_at_100
|
1900 |
+
value: 39.497
|
1901 |
+
- type: mrr_at_1000
|
1902 |
+
value: 39.531
|
1903 |
+
- type: mrr_at_3
|
1904 |
+
value: 34.9
|
1905 |
+
- type: mrr_at_5
|
1906 |
+
value: 37.01
|
1907 |
+
- type: ndcg_at_1
|
1908 |
+
value: 25.4
|
1909 |
+
- type: ndcg_at_10
|
1910 |
+
value: 24.062
|
1911 |
+
- type: ndcg_at_100
|
1912 |
+
value: 33.823
|
1913 |
+
- type: ndcg_at_1000
|
1914 |
+
value: 39.663
|
1915 |
+
- type: ndcg_at_3
|
1916 |
+
value: 22.246
|
1917 |
+
- type: ndcg_at_5
|
1918 |
+
value: 19.761
|
1919 |
+
- type: precision_at_1
|
1920 |
+
value: 25.4
|
1921 |
+
- type: precision_at_10
|
1922 |
+
value: 12.85
|
1923 |
+
- type: precision_at_100
|
1924 |
+
value: 2.71
|
1925 |
+
- type: precision_at_1000
|
1926 |
+
value: 0.41000000000000003
|
1927 |
+
- type: precision_at_3
|
1928 |
+
value: 21.4
|
1929 |
+
- type: precision_at_5
|
1930 |
+
value: 17.86
|
1931 |
+
- type: recall_at_1
|
1932 |
+
value: 5.128
|
1933 |
+
- type: recall_at_10
|
1934 |
+
value: 26.06
|
1935 |
+
- type: recall_at_100
|
1936 |
+
value: 54.993
|
1937 |
+
- type: recall_at_1000
|
1938 |
+
value: 83.165
|
1939 |
+
- type: recall_at_3
|
1940 |
+
value: 13.003
|
1941 |
+
- type: recall_at_5
|
1942 |
+
value: 18.117
|
1943 |
+
- task:
|
1944 |
+
type: STS
|
1945 |
+
dataset:
|
1946 |
+
type: mteb/sickr-sts
|
1947 |
+
name: MTEB SICK-R
|
1948 |
+
config: default
|
1949 |
+
split: test
|
1950 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
+
metrics:
|
1952 |
+
- type: cos_sim_pearson
|
1953 |
+
value: 87.5466779326323
|
1954 |
+
- type: cos_sim_spearman
|
1955 |
+
value: 82.79782085421951
|
1956 |
+
- type: euclidean_pearson
|
1957 |
+
value: 84.76929982677339
|
1958 |
+
- type: euclidean_spearman
|
1959 |
+
value: 82.51802536005597
|
1960 |
+
- type: manhattan_pearson
|
1961 |
+
value: 84.76736312526177
|
1962 |
+
- type: manhattan_spearman
|
1963 |
+
value: 82.50799656335593
|
1964 |
+
- task:
|
1965 |
+
type: STS
|
1966 |
+
dataset:
|
1967 |
+
type: mteb/sts12-sts
|
1968 |
+
name: MTEB STS12
|
1969 |
+
config: default
|
1970 |
+
split: test
|
1971 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
+
metrics:
|
1973 |
+
- type: cos_sim_pearson
|
1974 |
+
value: 86.40486308108694
|
1975 |
+
- type: cos_sim_spearman
|
1976 |
+
value: 77.12670500926937
|
1977 |
+
- type: euclidean_pearson
|
1978 |
+
value: 85.23836845503847
|
1979 |
+
- type: euclidean_spearman
|
1980 |
+
value: 78.41475117006176
|
1981 |
+
- type: manhattan_pearson
|
1982 |
+
value: 85.24302039610805
|
1983 |
+
- type: manhattan_spearman
|
1984 |
+
value: 78.4053162562707
|
1985 |
+
- task:
|
1986 |
+
type: STS
|
1987 |
+
dataset:
|
1988 |
+
type: mteb/sts13-sts
|
1989 |
+
name: MTEB STS13
|
1990 |
+
config: default
|
1991 |
+
split: test
|
1992 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
+
metrics:
|
1994 |
+
- type: cos_sim_pearson
|
1995 |
+
value: 88.83570289087565
|
1996 |
+
- type: cos_sim_spearman
|
1997 |
+
value: 89.28563503553643
|
1998 |
+
- type: euclidean_pearson
|
1999 |
+
value: 87.77516003996445
|
2000 |
+
- type: euclidean_spearman
|
2001 |
+
value: 88.8656149534085
|
2002 |
+
- type: manhattan_pearson
|
2003 |
+
value: 87.75568872417946
|
2004 |
+
- type: manhattan_spearman
|
2005 |
+
value: 88.80445489340585
|
2006 |
+
- task:
|
2007 |
+
type: STS
|
2008 |
+
dataset:
|
2009 |
+
type: mteb/sts14-sts
|
2010 |
+
name: MTEB STS14
|
2011 |
+
config: default
|
2012 |
+
split: test
|
2013 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
+
metrics:
|
2015 |
+
- type: cos_sim_pearson
|
2016 |
+
value: 86.776406555485
|
2017 |
+
- type: cos_sim_spearman
|
2018 |
+
value: 83.8288465070091
|
2019 |
+
- type: euclidean_pearson
|
2020 |
+
value: 85.37827999808123
|
2021 |
+
- type: euclidean_spearman
|
2022 |
+
value: 84.11079529992739
|
2023 |
+
- type: manhattan_pearson
|
2024 |
+
value: 85.35336495689121
|
2025 |
+
- type: manhattan_spearman
|
2026 |
+
value: 84.08618492649347
|
2027 |
+
- task:
|
2028 |
+
type: STS
|
2029 |
+
dataset:
|
2030 |
+
type: mteb/sts15-sts
|
2031 |
+
name: MTEB STS15
|
2032 |
+
config: default
|
2033 |
+
split: test
|
2034 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
+
metrics:
|
2036 |
+
- type: cos_sim_pearson
|
2037 |
+
value: 88.57644404820684
|
2038 |
+
- type: cos_sim_spearman
|
2039 |
+
value: 89.69728364350713
|
2040 |
+
- type: euclidean_pearson
|
2041 |
+
value: 88.28202320389443
|
2042 |
+
- type: euclidean_spearman
|
2043 |
+
value: 88.9560567319321
|
2044 |
+
- type: manhattan_pearson
|
2045 |
+
value: 88.29461100044172
|
2046 |
+
- type: manhattan_spearman
|
2047 |
+
value: 88.96030920678558
|
2048 |
+
- task:
|
2049 |
+
type: STS
|
2050 |
+
dataset:
|
2051 |
+
type: mteb/sts16-sts
|
2052 |
+
name: MTEB STS16
|
2053 |
+
config: default
|
2054 |
+
split: test
|
2055 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
+
metrics:
|
2057 |
+
- type: cos_sim_pearson
|
2058 |
+
value: 85.05211938460621
|
2059 |
+
- type: cos_sim_spearman
|
2060 |
+
value: 86.43413865667489
|
2061 |
+
- type: euclidean_pearson
|
2062 |
+
value: 85.62760689259562
|
2063 |
+
- type: euclidean_spearman
|
2064 |
+
value: 86.28867831982394
|
2065 |
+
- type: manhattan_pearson
|
2066 |
+
value: 85.60828879163458
|
2067 |
+
- type: manhattan_spearman
|
2068 |
+
value: 86.27823731462473
|
2069 |
+
- task:
|
2070 |
+
type: STS
|
2071 |
+
dataset:
|
2072 |
+
type: mteb/sts17-crosslingual-sts
|
2073 |
+
name: MTEB STS17 (en-en)
|
2074 |
+
config: en-en
|
2075 |
+
split: test
|
2076 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
+
metrics:
|
2078 |
+
- type: cos_sim_pearson
|
2079 |
+
value: 90.00254140466377
|
2080 |
+
- type: cos_sim_spearman
|
2081 |
+
value: 89.66118745178284
|
2082 |
+
- type: euclidean_pearson
|
2083 |
+
value: 89.46985446236553
|
2084 |
+
- type: euclidean_spearman
|
2085 |
+
value: 88.92649032371526
|
2086 |
+
- type: manhattan_pearson
|
2087 |
+
value: 89.49600028180247
|
2088 |
+
- type: manhattan_spearman
|
2089 |
+
value: 88.86948431519099
|
2090 |
+
- task:
|
2091 |
+
type: STS
|
2092 |
+
dataset:
|
2093 |
+
type: mteb/sts22-crosslingual-sts
|
2094 |
+
name: MTEB STS22 (en)
|
2095 |
+
config: en
|
2096 |
+
split: test
|
2097 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
+
metrics:
|
2099 |
+
- type: cos_sim_pearson
|
2100 |
+
value: 68.93578321067938
|
2101 |
+
- type: cos_sim_spearman
|
2102 |
+
value: 69.60639595839257
|
2103 |
+
- type: euclidean_pearson
|
2104 |
+
value: 70.33485090574897
|
2105 |
+
- type: euclidean_spearman
|
2106 |
+
value: 69.03380379185452
|
2107 |
+
- type: manhattan_pearson
|
2108 |
+
value: 70.42097254943839
|
2109 |
+
- type: manhattan_spearman
|
2110 |
+
value: 69.25296348304255
|
2111 |
+
- task:
|
2112 |
+
type: STS
|
2113 |
+
dataset:
|
2114 |
+
type: mteb/stsbenchmark-sts
|
2115 |
+
name: MTEB STSBenchmark
|
2116 |
+
config: default
|
2117 |
+
split: test
|
2118 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
+
metrics:
|
2120 |
+
- type: cos_sim_pearson
|
2121 |
+
value: 87.29588700755069
|
2122 |
+
- type: cos_sim_spearman
|
2123 |
+
value: 88.30389489193672
|
2124 |
+
- type: euclidean_pearson
|
2125 |
+
value: 87.60349838180346
|
2126 |
+
- type: euclidean_spearman
|
2127 |
+
value: 87.91041868311692
|
2128 |
+
- type: manhattan_pearson
|
2129 |
+
value: 87.59373630607907
|
2130 |
+
- type: manhattan_spearman
|
2131 |
+
value: 87.88690174001724
|
2132 |
+
- task:
|
2133 |
+
type: Reranking
|
2134 |
+
dataset:
|
2135 |
+
type: mteb/scidocs-reranking
|
2136 |
+
name: MTEB SciDocsRR
|
2137 |
+
config: default
|
2138 |
+
split: test
|
2139 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
+
metrics:
|
2141 |
+
- type: map
|
2142 |
+
value: 87.8030655700857
|
2143 |
+
- type: mrr
|
2144 |
+
value: 96.3950637234951
|
2145 |
+
- task:
|
2146 |
+
type: Retrieval
|
2147 |
+
dataset:
|
2148 |
+
type: scifact
|
2149 |
+
name: MTEB SciFact
|
2150 |
+
config: default
|
2151 |
+
split: test
|
2152 |
+
revision: None
|
2153 |
+
metrics:
|
2154 |
+
- type: map_at_1
|
2155 |
+
value: 60.028000000000006
|
2156 |
+
- type: map_at_10
|
2157 |
+
value: 69.855
|
2158 |
+
- type: map_at_100
|
2159 |
+
value: 70.257
|
2160 |
+
- type: map_at_1000
|
2161 |
+
value: 70.283
|
2162 |
+
- type: map_at_3
|
2163 |
+
value: 66.769
|
2164 |
+
- type: map_at_5
|
2165 |
+
value: 68.679
|
2166 |
+
- type: mrr_at_1
|
2167 |
+
value: 62.666999999999994
|
2168 |
+
- type: mrr_at_10
|
2169 |
+
value: 70.717
|
2170 |
+
- type: mrr_at_100
|
2171 |
+
value: 71.00800000000001
|
2172 |
+
- type: mrr_at_1000
|
2173 |
+
value: 71.033
|
2174 |
+
- type: mrr_at_3
|
2175 |
+
value: 68.389
|
2176 |
+
- type: mrr_at_5
|
2177 |
+
value: 69.939
|
2178 |
+
- type: ndcg_at_1
|
2179 |
+
value: 62.666999999999994
|
2180 |
+
- type: ndcg_at_10
|
2181 |
+
value: 74.715
|
2182 |
+
- type: ndcg_at_100
|
2183 |
+
value: 76.364
|
2184 |
+
- type: ndcg_at_1000
|
2185 |
+
value: 76.89399999999999
|
2186 |
+
- type: ndcg_at_3
|
2187 |
+
value: 69.383
|
2188 |
+
- type: ndcg_at_5
|
2189 |
+
value: 72.322
|
2190 |
+
- type: precision_at_1
|
2191 |
+
value: 62.666999999999994
|
2192 |
+
- type: precision_at_10
|
2193 |
+
value: 10.067
|
2194 |
+
- type: precision_at_100
|
2195 |
+
value: 1.09
|
2196 |
+
- type: precision_at_1000
|
2197 |
+
value: 0.11299999999999999
|
2198 |
+
- type: precision_at_3
|
2199 |
+
value: 27.111
|
2200 |
+
- type: precision_at_5
|
2201 |
+
value: 18.267
|
2202 |
+
- type: recall_at_1
|
2203 |
+
value: 60.028000000000006
|
2204 |
+
- type: recall_at_10
|
2205 |
+
value: 88.822
|
2206 |
+
- type: recall_at_100
|
2207 |
+
value: 96.167
|
2208 |
+
- type: recall_at_1000
|
2209 |
+
value: 100.0
|
2210 |
+
- type: recall_at_3
|
2211 |
+
value: 74.367
|
2212 |
+
- type: recall_at_5
|
2213 |
+
value: 81.661
|
2214 |
+
- task:
|
2215 |
+
type: PairClassification
|
2216 |
+
dataset:
|
2217 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2218 |
+
name: MTEB SprintDuplicateQuestions
|
2219 |
+
config: default
|
2220 |
+
split: test
|
2221 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
+
metrics:
|
2223 |
+
- type: cos_sim_accuracy
|
2224 |
+
value: 99.84554455445544
|
2225 |
+
- type: cos_sim_ap
|
2226 |
+
value: 96.54482863244152
|
2227 |
+
- type: cos_sim_f1
|
2228 |
+
value: 92.13709677419355
|
2229 |
+
- type: cos_sim_precision
|
2230 |
+
value: 92.88617886178862
|
2231 |
+
- type: cos_sim_recall
|
2232 |
+
value: 91.4
|
2233 |
+
- type: dot_accuracy
|
2234 |
+
value: 99.76039603960396
|
2235 |
+
- type: dot_ap
|
2236 |
+
value: 93.20115278887057
|
2237 |
+
- type: dot_f1
|
2238 |
+
value: 87.92079207920793
|
2239 |
+
- type: dot_precision
|
2240 |
+
value: 87.05882352941177
|
2241 |
+
- type: dot_recall
|
2242 |
+
value: 88.8
|
2243 |
+
- type: euclidean_accuracy
|
2244 |
+
value: 99.84950495049505
|
2245 |
+
- type: euclidean_ap
|
2246 |
+
value: 96.53268343961348
|
2247 |
+
- type: euclidean_f1
|
2248 |
+
value: 92.23697650663942
|
2249 |
+
- type: euclidean_precision
|
2250 |
+
value: 94.258872651357
|
2251 |
+
- type: euclidean_recall
|
2252 |
+
value: 90.3
|
2253 |
+
- type: manhattan_accuracy
|
2254 |
+
value: 99.85346534653465
|
2255 |
+
- type: manhattan_ap
|
2256 |
+
value: 96.54495433438355
|
2257 |
+
- type: manhattan_f1
|
2258 |
+
value: 92.51012145748987
|
2259 |
+
- type: manhattan_precision
|
2260 |
+
value: 93.64754098360656
|
2261 |
+
- type: manhattan_recall
|
2262 |
+
value: 91.4
|
2263 |
+
- type: max_accuracy
|
2264 |
+
value: 99.85346534653465
|
2265 |
+
- type: max_ap
|
2266 |
+
value: 96.54495433438355
|
2267 |
+
- type: max_f1
|
2268 |
+
value: 92.51012145748987
|
2269 |
+
- task:
|
2270 |
+
type: Clustering
|
2271 |
+
dataset:
|
2272 |
+
type: mteb/stackexchange-clustering
|
2273 |
+
name: MTEB StackExchangeClustering
|
2274 |
+
config: default
|
2275 |
+
split: test
|
2276 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
+
metrics:
|
2278 |
+
- type: v_measure
|
2279 |
+
value: 66.46940443952006
|
2280 |
+
- task:
|
2281 |
+
type: Clustering
|
2282 |
+
dataset:
|
2283 |
+
type: mteb/stackexchange-clustering-p2p
|
2284 |
+
name: MTEB StackExchangeClusteringP2P
|
2285 |
+
config: default
|
2286 |
+
split: test
|
2287 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
+
metrics:
|
2289 |
+
- type: v_measure
|
2290 |
+
value: 36.396194493841584
|
2291 |
+
- task:
|
2292 |
+
type: Reranking
|
2293 |
+
dataset:
|
2294 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2295 |
+
name: MTEB StackOverflowDupQuestions
|
2296 |
+
config: default
|
2297 |
+
split: test
|
2298 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
+
metrics:
|
2300 |
+
- type: map
|
2301 |
+
value: 54.881717673695555
|
2302 |
+
- type: mrr
|
2303 |
+
value: 55.73439224174519
|
2304 |
+
- task:
|
2305 |
+
type: Summarization
|
2306 |
+
dataset:
|
2307 |
+
type: mteb/summeval
|
2308 |
+
name: MTEB SummEval
|
2309 |
+
config: default
|
2310 |
+
split: test
|
2311 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
+
metrics:
|
2313 |
+
- type: cos_sim_pearson
|
2314 |
+
value: 31.438177268254087
|
2315 |
+
- type: cos_sim_spearman
|
2316 |
+
value: 30.96177698848688
|
2317 |
+
- type: dot_pearson
|
2318 |
+
value: 30.513850376431435
|
2319 |
+
- type: dot_spearman
|
2320 |
+
value: 29.932421046509706
|
2321 |
+
- task:
|
2322 |
+
type: Retrieval
|
2323 |
+
dataset:
|
2324 |
+
type: trec-covid
|
2325 |
+
name: MTEB TRECCOVID
|
2326 |
+
config: default
|
2327 |
+
split: test
|
2328 |
+
revision: None
|
2329 |
+
metrics:
|
2330 |
+
- type: map_at_1
|
2331 |
+
value: 0.21
|
2332 |
+
- type: map_at_10
|
2333 |
+
value: 1.727
|
2334 |
+
- type: map_at_100
|
2335 |
+
value: 9.881
|
2336 |
+
- type: map_at_1000
|
2337 |
+
value: 24.245
|
2338 |
+
- type: map_at_3
|
2339 |
+
value: 0.615
|
2340 |
+
- type: map_at_5
|
2341 |
+
value: 0.966
|
2342 |
+
- type: mrr_at_1
|
2343 |
+
value: 78.0
|
2344 |
+
- type: mrr_at_10
|
2345 |
+
value: 87.333
|
2346 |
+
- type: mrr_at_100
|
2347 |
+
value: 87.333
|
2348 |
+
- type: mrr_at_1000
|
2349 |
+
value: 87.333
|
2350 |
+
- type: mrr_at_3
|
2351 |
+
value: 86.333
|
2352 |
+
- type: mrr_at_5
|
2353 |
+
value: 87.333
|
2354 |
+
- type: ndcg_at_1
|
2355 |
+
value: 74.0
|
2356 |
+
- type: ndcg_at_10
|
2357 |
+
value: 69.12700000000001
|
2358 |
+
- type: ndcg_at_100
|
2359 |
+
value: 53.893
|
2360 |
+
- type: ndcg_at_1000
|
2361 |
+
value: 49.639
|
2362 |
+
- type: ndcg_at_3
|
2363 |
+
value: 74.654
|
2364 |
+
- type: ndcg_at_5
|
2365 |
+
value: 73.232
|
2366 |
+
- type: precision_at_1
|
2367 |
+
value: 78.0
|
2368 |
+
- type: precision_at_10
|
2369 |
+
value: 72.8
|
2370 |
+
- type: precision_at_100
|
2371 |
+
value: 55.42
|
2372 |
+
- type: precision_at_1000
|
2373 |
+
value: 21.73
|
2374 |
+
- type: precision_at_3
|
2375 |
+
value: 79.333
|
2376 |
+
- type: precision_at_5
|
2377 |
+
value: 77.2
|
2378 |
+
- type: recall_at_1
|
2379 |
+
value: 0.21
|
2380 |
+
- type: recall_at_10
|
2381 |
+
value: 1.9709999999999999
|
2382 |
+
- type: recall_at_100
|
2383 |
+
value: 13.555
|
2384 |
+
- type: recall_at_1000
|
2385 |
+
value: 46.961999999999996
|
2386 |
+
- type: recall_at_3
|
2387 |
+
value: 0.66
|
2388 |
+
- type: recall_at_5
|
2389 |
+
value: 1.052
|
2390 |
+
- task:
|
2391 |
+
type: Retrieval
|
2392 |
+
dataset:
|
2393 |
+
type: webis-touche2020
|
2394 |
+
name: MTEB Touche2020
|
2395 |
+
config: default
|
2396 |
+
split: test
|
2397 |
+
revision: None
|
2398 |
+
metrics:
|
2399 |
+
- type: map_at_1
|
2400 |
+
value: 2.456
|
2401 |
+
- type: map_at_10
|
2402 |
+
value: 9.426
|
2403 |
+
- type: map_at_100
|
2404 |
+
value: 16.066
|
2405 |
+
- type: map_at_1000
|
2406 |
+
value: 17.652
|
2407 |
+
- type: map_at_3
|
2408 |
+
value: 5.2459999999999996
|
2409 |
+
- type: map_at_5
|
2410 |
+
value: 6.5360000000000005
|
2411 |
+
- type: mrr_at_1
|
2412 |
+
value: 34.694
|
2413 |
+
- type: mrr_at_10
|
2414 |
+
value: 47.666
|
2415 |
+
- type: mrr_at_100
|
2416 |
+
value: 48.681999999999995
|
2417 |
+
- type: mrr_at_1000
|
2418 |
+
value: 48.681999999999995
|
2419 |
+
- type: mrr_at_3
|
2420 |
+
value: 43.878
|
2421 |
+
- type: mrr_at_5
|
2422 |
+
value: 46.224
|
2423 |
+
- type: ndcg_at_1
|
2424 |
+
value: 31.633
|
2425 |
+
- type: ndcg_at_10
|
2426 |
+
value: 23.454
|
2427 |
+
- type: ndcg_at_100
|
2428 |
+
value: 36.616
|
2429 |
+
- type: ndcg_at_1000
|
2430 |
+
value: 48.596000000000004
|
2431 |
+
- type: ndcg_at_3
|
2432 |
+
value: 28.267999999999997
|
2433 |
+
- type: ndcg_at_5
|
2434 |
+
value: 25.630999999999997
|
2435 |
+
- type: precision_at_1
|
2436 |
+
value: 34.694
|
2437 |
+
- type: precision_at_10
|
2438 |
+
value: 20.204
|
2439 |
+
- type: precision_at_100
|
2440 |
+
value: 7.754999999999999
|
2441 |
+
- type: precision_at_1000
|
2442 |
+
value: 1.5709999999999997
|
2443 |
+
- type: precision_at_3
|
2444 |
+
value: 29.252
|
2445 |
+
- type: precision_at_5
|
2446 |
+
value: 24.898
|
2447 |
+
- type: recall_at_1
|
2448 |
+
value: 2.456
|
2449 |
+
- type: recall_at_10
|
2450 |
+
value: 14.951
|
2451 |
+
- type: recall_at_100
|
2452 |
+
value: 48.399
|
2453 |
+
- type: recall_at_1000
|
2454 |
+
value: 85.077
|
2455 |
+
- type: recall_at_3
|
2456 |
+
value: 6.1370000000000005
|
2457 |
+
- type: recall_at_5
|
2458 |
+
value: 8.671
|
2459 |
+
- task:
|
2460 |
+
type: Classification
|
2461 |
+
dataset:
|
2462 |
+
type: mteb/toxic_conversations_50k
|
2463 |
+
name: MTEB ToxicConversationsClassification
|
2464 |
+
config: default
|
2465 |
+
split: test
|
2466 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
+
metrics:
|
2468 |
+
- type: accuracy
|
2469 |
+
value: 71.86240000000001
|
2470 |
+
- type: ap
|
2471 |
+
value: 14.678570078747494
|
2472 |
+
- type: f1
|
2473 |
+
value: 55.295967793934445
|
2474 |
+
- task:
|
2475 |
+
type: Classification
|
2476 |
+
dataset:
|
2477 |
+
type: mteb/tweet_sentiment_extraction
|
2478 |
+
name: MTEB TweetSentimentExtractionClassification
|
2479 |
+
config: default
|
2480 |
+
split: test
|
2481 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
+
metrics:
|
2483 |
+
- type: accuracy
|
2484 |
+
value: 59.17374080362195
|
2485 |
+
- type: f1
|
2486 |
+
value: 59.54410874861454
|
2487 |
+
- task:
|
2488 |
+
type: Clustering
|
2489 |
+
dataset:
|
2490 |
+
type: mteb/twentynewsgroups-clustering
|
2491 |
+
name: MTEB TwentyNewsgroupsClustering
|
2492 |
+
config: default
|
2493 |
+
split: test
|
2494 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
+
metrics:
|
2496 |
+
- type: v_measure
|
2497 |
+
value: 51.91227822485289
|
2498 |
+
- task:
|
2499 |
+
type: PairClassification
|
2500 |
+
dataset:
|
2501 |
+
type: mteb/twittersemeval2015-pairclassification
|
2502 |
+
name: MTEB TwitterSemEval2015
|
2503 |
+
config: default
|
2504 |
+
split: test
|
2505 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
+
metrics:
|
2507 |
+
- type: cos_sim_accuracy
|
2508 |
+
value: 87.12523097097217
|
2509 |
+
- type: cos_sim_ap
|
2510 |
+
value: 77.59606075943269
|
2511 |
+
- type: cos_sim_f1
|
2512 |
+
value: 71.11395646606915
|
2513 |
+
- type: cos_sim_precision
|
2514 |
+
value: 69.07960199004975
|
2515 |
+
- type: cos_sim_recall
|
2516 |
+
value: 73.27176781002639
|
2517 |
+
- type: dot_accuracy
|
2518 |
+
value: 84.68736961316088
|
2519 |
+
- type: dot_ap
|
2520 |
+
value: 68.47167450741459
|
2521 |
+
- type: dot_f1
|
2522 |
+
value: 64.42152354914874
|
2523 |
+
- type: dot_precision
|
2524 |
+
value: 60.887949260042284
|
2525 |
+
- type: dot_recall
|
2526 |
+
value: 68.3905013192612
|
2527 |
+
- type: euclidean_accuracy
|
2528 |
+
value: 86.88084878106932
|
2529 |
+
- type: euclidean_ap
|
2530 |
+
value: 77.27351204978599
|
2531 |
+
- type: euclidean_f1
|
2532 |
+
value: 70.99179716629381
|
2533 |
+
- type: euclidean_precision
|
2534 |
+
value: 67.10526315789474
|
2535 |
+
- type: euclidean_recall
|
2536 |
+
value: 75.35620052770449
|
2537 |
+
- type: manhattan_accuracy
|
2538 |
+
value: 86.83316445133218
|
2539 |
+
- type: manhattan_ap
|
2540 |
+
value: 77.21835357308716
|
2541 |
+
- type: manhattan_f1
|
2542 |
+
value: 71.05587004676349
|
2543 |
+
- type: manhattan_precision
|
2544 |
+
value: 66.58210332103322
|
2545 |
+
- type: manhattan_recall
|
2546 |
+
value: 76.17414248021109
|
2547 |
+
- type: max_accuracy
|
2548 |
+
value: 87.12523097097217
|
2549 |
+
- type: max_ap
|
2550 |
+
value: 77.59606075943269
|
2551 |
+
- type: max_f1
|
2552 |
+
value: 71.11395646606915
|
2553 |
+
- task:
|
2554 |
+
type: PairClassification
|
2555 |
+
dataset:
|
2556 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2557 |
+
name: MTEB TwitterURLCorpus
|
2558 |
+
config: default
|
2559 |
+
split: test
|
2560 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
+
metrics:
|
2562 |
+
- type: cos_sim_accuracy
|
2563 |
+
value: 88.97232894787906
|
2564 |
+
- type: cos_sim_ap
|
2565 |
+
value: 85.9613736469497
|
2566 |
+
- type: cos_sim_f1
|
2567 |
+
value: 78.40216655382532
|
2568 |
+
- type: cos_sim_precision
|
2569 |
+
value: 72.97512437810946
|
2570 |
+
- type: cos_sim_recall
|
2571 |
+
value: 84.70126270403449
|
2572 |
+
- type: dot_accuracy
|
2573 |
+
value: 88.04866689952264
|
2574 |
+
- type: dot_ap
|
2575 |
+
value: 83.15465089499936
|
2576 |
+
- type: dot_f1
|
2577 |
+
value: 76.32698287879329
|
2578 |
+
- type: dot_precision
|
2579 |
+
value: 71.23223697378077
|
2580 |
+
- type: dot_recall
|
2581 |
+
value: 82.20665229442562
|
2582 |
+
- type: euclidean_accuracy
|
2583 |
+
value: 88.67543757519307
|
2584 |
+
- type: euclidean_ap
|
2585 |
+
value: 85.4524355531532
|
2586 |
+
- type: euclidean_f1
|
2587 |
+
value: 77.78729106950081
|
2588 |
+
- type: euclidean_precision
|
2589 |
+
value: 75.3009009009009
|
2590 |
+
- type: euclidean_recall
|
2591 |
+
value: 80.44348629504158
|
2592 |
+
- type: manhattan_accuracy
|
2593 |
+
value: 88.65991384328792
|
2594 |
+
- type: manhattan_ap
|
2595 |
+
value: 85.43109069046837
|
2596 |
+
- type: manhattan_f1
|
2597 |
+
value: 77.72639551396425
|
2598 |
+
- type: manhattan_precision
|
2599 |
+
value: 73.73402417962004
|
2600 |
+
- type: manhattan_recall
|
2601 |
+
value: 82.17585463504774
|
2602 |
+
- type: max_accuracy
|
2603 |
+
value: 88.97232894787906
|
2604 |
+
- type: max_ap
|
2605 |
+
value: 85.9613736469497
|
2606 |
+
- type: max_f1
|
2607 |
+
value: 78.40216655382532
|
2608 |
---
|
2609 |
+
<h1 align="center">GIST Large Embedding v0</h1>
|
2610 |
+
|
2611 |
+
*GIST Embedding: Guided In-sample Selection of Training Negatives for Text Embedding*
|
2612 |
+
|
2613 |
+
The model is fine-tuned on top of the [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
|
2614 |
+
|
2615 |
+
The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
|
2616 |
+
|
2617 |
+
Technical details of the model will be published shortly.
|
2618 |
+
|
2619 |
+
# Data
|
2620 |
+
|
2621 |
+
The dataset used is a compilation of the MEDI dataset and the MTEB Classification training dataset. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
|
2622 |
+
|
2623 |
+
- Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
|
2624 |
+
- Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
|
2625 |
+
|
2626 |
+
The dataset contains a `task_type` key which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
|
2627 |
+
|
2628 |
+
The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
|
2629 |
+
|
2630 |
+
The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
|
2631 |
+
|
2632 |
+
The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID, which could have caused the observed performance degradation. Further work is currently being undertaken to validate this hypothesis.
|
2633 |
+
|
2634 |
+
# Usage
|
2635 |
+
|
2636 |
+
The model can be easily loaded using the Sentence Transformers library.
|
2637 |
+
|
2638 |
+
```Python
|
2639 |
+
import torch.nn.functional as F
|
2640 |
+
from sentence_transformers import SentenceTransformer
|
2641 |
+
|
2642 |
+
revision = None # Replace with the specific revision to ensure reproducibility in case the model is updated.
|
2643 |
+
|
2644 |
+
model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0", revision=revision)
|
2645 |
+
|
2646 |
+
texts = [
|
2647 |
+
"Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
|
2648 |
+
"Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
|
2649 |
+
"As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
|
2650 |
+
]
|
2651 |
+
|
2652 |
+
# Compute embeddings
|
2653 |
+
embeddings = model.encode(texts, convert_to_tensor=True)
|
2654 |
+
|
2655 |
+
# Compute cosine-similarity for each pair of sentences
|
2656 |
+
scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
|
2657 |
+
|
2658 |
+
print(scores.cpu().numpy())
|
2659 |
+
```
|
2660 |
+
|
2661 |
+
# Training Parameters
|
2662 |
+
|
2663 |
+
Below are the training parameters used to fine-tune the model:
|
2664 |
+
|
2665 |
+
```
|
2666 |
+
Epochs = 40
|
2667 |
+
Warmup ratio = 0.1
|
2668 |
+
Learning rate = 5e-6
|
2669 |
+
Batch size = 16
|
2670 |
+
Checkpoint step = 171000
|
2671 |
+
Contrastive loss temperature = 0.01
|
2672 |
+
```
|
2673 |
+
|
2674 |
+
Specific training details and strategies will be published shortly.
|
2675 |
+
|
2676 |
+
# Evaluation
|
2677 |
+
|
2678 |
+
The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
|
2679 |
+
|
2680 |
+
|
2681 |
+
# Acknowledgements
|
2682 |
+
|
2683 |
+
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
2684 |
+
|
2685 |
+
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|
commit-info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"repo_id": "avsolatorio/02-100-11-1-2-2-0-0-cls-normed-1024-512_GIST_BAAI_bge-large-en-v1.5-20240212001152-latest", "commit_message": "{\"loss\": 0.1359, \"learning_rate\": 1.880476475349263e-06, \"epoch\": 1.5, \"step\": 171000}"}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "avsolatorio/GIST-large-Embedding-v0",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.37.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
}
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0402c8c231bed413465ccd6d8c09171f78774a540b42e0b381401c2a247b40a
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|