File size: 3,340 Bytes
ec95fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: doc-topic-model_eval-01_train-00
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# doc-topic-model_eval-01_train-00

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0386
- Accuracy: 0.9878
- F1: 0.6354
- Precision: 0.7155
- Recall: 0.5714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0929        | 0.4931 | 1000  | 0.0911          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0785        | 0.9862 | 2000  | 0.0707          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0622        | 1.4793 | 3000  | 0.0574          | 0.9823   | 0.1057 | 0.8595    | 0.0563 |
| 0.0542        | 1.9724 | 4000  | 0.0498          | 0.9843   | 0.3396 | 0.7800    | 0.2171 |
| 0.048         | 2.4655 | 5000  | 0.0461          | 0.9852   | 0.4251 | 0.7708    | 0.2935 |
| 0.0436        | 2.9586 | 6000  | 0.0433          | 0.9860   | 0.5031 | 0.7426    | 0.3804 |
| 0.0384        | 3.4517 | 7000  | 0.0413          | 0.9865   | 0.5389 | 0.7357    | 0.4252 |
| 0.0385        | 3.9448 | 8000  | 0.0399          | 0.9867   | 0.5362 | 0.7647    | 0.4128 |
| 0.0343        | 4.4379 | 9000  | 0.0396          | 0.9869   | 0.5599 | 0.7452    | 0.4484 |
| 0.0343        | 4.9310 | 10000 | 0.0387          | 0.9870   | 0.5692 | 0.7471    | 0.4598 |
| 0.0304        | 5.4241 | 11000 | 0.0385          | 0.9873   | 0.5861 | 0.7432    | 0.4837 |
| 0.0299        | 5.9172 | 12000 | 0.0373          | 0.9875   | 0.6055 | 0.7342    | 0.5152 |
| 0.0265        | 6.4103 | 13000 | 0.0376          | 0.9873   | 0.6069 | 0.7159    | 0.5268 |
| 0.0261        | 6.9034 | 14000 | 0.0372          | 0.9877   | 0.6138 | 0.7384    | 0.5252 |
| 0.0236        | 7.3964 | 15000 | 0.0378          | 0.9876   | 0.6187 | 0.7225    | 0.5409 |
| 0.0236        | 7.8895 | 16000 | 0.0379          | 0.9878   | 0.6205 | 0.7374    | 0.5357 |
| 0.0215        | 8.3826 | 17000 | 0.0383          | 0.9876   | 0.6241 | 0.7126    | 0.5551 |
| 0.0216        | 8.8757 | 18000 | 0.0386          | 0.9877   | 0.6297 | 0.7143    | 0.5630 |
| 0.0177        | 9.3688 | 19000 | 0.0386          | 0.9878   | 0.6354 | 0.7155    | 0.5714 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1