awaisakhtar commited on
Commit
56fbb87
1 Parent(s): 6f874c5

Update readme

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -25,4 +25,51 @@ The following `bitsandbytes` quantization config was used during training:
25
 
26
  - PEFT 0.5.0
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
 
25
 
26
  - PEFT 0.5.0
27
 
28
+ # Project Title
29
+
30
+ Short description of your project or the model you've fine-tuned.
31
+
32
+ ## Table of Contents
33
+
34
+ - [Overview](#overview)
35
+ - [Training Procedure](#training-procedure)
36
+ - [Quantization Configuration](#quantization-configuration)
37
+ - [Framework Versions](#framework-versions)
38
+ - [Usage](#usage)
39
+ - [Evaluation](#evaluation)
40
+ - [Contributing](#contributing)
41
+ - [License](#license)
42
+
43
+ ## Overview
44
+
45
+ Provide a brief introduction to your project. Explain what your fine-tuned model does and its potential applications. Mention any notable achievements or improvements over the base model.
46
+
47
+ ## Training Procedure
48
+
49
+ Describe the training process for your fine-tuned model. Include details such as:
50
+ - Dataset used (XSum).
51
+ - Amount of data used (3% of the dataset).
52
+ - Number of training epochs (1 epoch).
53
+ - Any specific data preprocessing or augmentation.
54
+
55
+ ## Quantization Configuration
56
+
57
+ Explain the quantization configuration used during training. Include details such as:
58
+ - Quantization method (bitsandbytes).
59
+ - Whether you loaded data in 8-bit or 4-bit.
60
+ - Threshold and skip modules for int8 quantization.
61
+ - Use of FP32 CPU offload and FP16 weight.
62
+ - Configuration for 4-bit quantization (fp4, double quant, compute dtype).
63
+
64
+ ## Framework Versions
65
+
66
+ List the versions of the frameworks or libraries you used for this project. Include specific versions, e.g., PEFT 0.5.0.
67
+
68
+ ## Usage
69
+
70
+ Provide instructions on how to use your fine-tuned model. Include code snippets or examples on how to generate summaries using the model. Mention any dependencies that need to be installed.
71
+
72
+ ```bash
73
+ # Example usage command
74
+ python generate_summary.py --model your-model-name --input input.txt --output output.txt
75