awesomecxh commited on
Commit
0b408fc
1 Parent(s): 06a31ad

Upload PPO LunarLander-V2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.25 +/- 18.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7969dea1dbd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7969dea1dc60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7969dea1dcf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7969dea1dd80>", "_build": "<function ActorCriticPolicy._build at 0x7969dea1de10>", "forward": "<function ActorCriticPolicy.forward at 0x7969dea1dea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7969dea1df30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7969dea1dfc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7969dea1e050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7969dea1e0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7969dea1e170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7969dea1e200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7969df32cf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708432625481486448, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAljb11H+s+9H6bPS93h75zlQQ7cndZPQAAAAAAAAAAzW1gPYzyTT5GYm6+ttlEvki/M70axhi9AAAAAAAAAAAAgN47VBuHPj0eRL2aaQq+QVrVuyO9X70AAAAAAAAAAJqRuL04B/67puwuvIkOCD2RgGQ9vvHdvQAAgD8AAIA/mnk1vJFTgj/TmOQ61wKfvm+YbzuWhJ+8AAAAAAAAAABe/pa+SAWsP4lrDL/h+MC+SmOvvl82C70AAAAAAAAAALPxFr4uhp0/0x0NvzZ2sL4TW0K+ds8qvgAAAAAAAAAAAObuPE32BD7gpRc+gR5bvikRHT5VOwe8AAAAAAAAAAAmVMG9UpDOuUZq7LoCIny2w3z4OzvQCzoAAIA/AAAAAABG6zxTBOo+ng1DPEZbmr5PmIY93tcUPQAAAAAAAAAAkCqNvgaNjT/s/gy+4dXKvlracr77fJo7AAAAAAAAAADNCWg+iBgAP9G6xr6NQo2+E3xtvaJa9b0AAAAAAAAAAM1iCb7RgD4/ys42PqtWpr66s488/qgqPQAAAAAAAAAA/T6KPiOGeD+kCYY9+gK6vuiadz59k2w8AAAAAAAAAABNB3I9qfQhPoZPELuXmz2+w8CvPYWycr0AAAAAAAAAAMYkDT5WvCU/ojPTvLH7kb6ns249+pGXugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGfeBH09QqMAWyUTUQBjAF0lEdArqWTCaZx73V9lChoBkdAb1XDiwSrYGgHTQ0BaAhHQK6mbNHH3lF1fZQoaAZHQHJNzY/Vy3loB00FAWgIR0CuppFC9h7WdX2UKGgGR0BwjhBhQWN4aAdNKAFoCEdArqaq3iJfpnV9lChoBkdAbcc9sabWmWgHTQsBaAhHQK6m0uSOinJ1fZQoaAZHQHBII2OyVwBoB00uAWgIR0Cupvi2UjcEdX2UKGgGR0Bxfa6oVEeAaAdNZAFoCEdArqcUO3DvVnV9lChoBkdAbxPOVPepGWgHTSYBaAhHQK6ncb5M10l1fZQoaAZHQHBWUleF+NNoB00FAWgIR0CuqF/xlQMydX2UKGgGR0Bxmp60IC2daAdNLgFoCEdArqh7WPLgXXV9lChoBkdATXWkadc0L2gHS/VoCEdArqkQ7eVLSXV9lChoBkdAcEngzxgAqGgHTT8BaAhHQK6pPOjZcs11fZQoaAZHQHC2zfJmukloB01IAWgIR0CuqXqLjxTbdX2UKGgGR0BzGxe5WilBaAdNggFoCEdArqmG10DEFXV9lChoBkdAcdQEAYHgP2gHTSMBaAhHQK6qOpON5t51fZQoaAZHQHH3kQbuMMtoB00JAWgIR0CuqrEd/8VIdX2UKGgGR0BtY8rd30PIaAdNaAFoCEdArqsR8pkPMHV9lChoBkdAcbvw97ngYWgHTeEBaAhHQK6rNkzXSSh1fZQoaAZHQHItu6qbSZ1oB00sAWgIR0Cuq4+nAIppdX2UKGgGR0Bx0k35vcagaAdNHwFoCEdArquztmcvunV9lChoBkdAcRxs4T9KmWgHTT4BaAhHQK6rw1YyO7x1fZQoaAZHQHCT6OLiuMdoB00vAWgIR0Cuq8rcj7hvdX2UKGgGR0Btsa28Zk08aAdNSAFoCEdArqyBM36yjnV9lChoBkdAcaJr433pOmgHTTUBaAhHQK6toGlhw2l1fZQoaAZHQEecBmwqy4ZoB0vVaAhHQK6t5alk6Lh1fZQoaAZHQHAOP+0gKWtoB00DAWgIR0CurepTdcjadX2UKGgGR0BzIJWjoIOZaAdNHQFoCEdArq34JHAh0XV9lChoBkdAcOZ6xxDLKWgHTUIBaAhHQK6uBxYq5LB1fZQoaAZHQHKlTXjENvxoB00PAWgIR0CuribsWweOdX2UKGgGR0BxcsIu5BkaaAdNOQFoCEdArq6FipeeF3V9lChoBkdAcodZUDMeOmgHTbkBaAhHQK6u/cHnln11fZQoaAZHQFE4khA4XGhoB0vcaAhHQK6vs0+C9RJ1fZQoaAZHQGzBPSUkfLdoB00oAWgIR0CusBmJN0vHdX2UKGgGR0Bw9XSc9W6taAdNCQFoCEdArrCAGdI5HXV9lChoBkdAcXacWj4592gHTSEBaAhHQK6wlKcNH6N1fZQoaAZHQHDa9TtLL6loB00sAWgIR0CusKIfjjrBdX2UKGgGR0Bwkj5zo2XLaAdNKgFoCEdArrFpD/lyR3V9lChoBkdAcAKe7cwg1WgHTS4BaAhHQK6xc1Z1V5t1fZQoaAZHQG8pig00m+loB01JAWgIR0CusvFc6eXidX2UKGgGR0BtuXIbOu7paAdNDAFoCEdArrNMXvYvnXV9lChoBkdAcQ2L2pQ1rWgHTT0BaAhHQK6zzx95Qgt1fZQoaAZHQHLFi5mRNh5oB004AWgIR0Cus/N2cJ+ldX2UKGgGR0Bw52UeMhouaAdNRQFoCEdArrQ0QI2OyXV9lChoBkdAcbAcslLOA2gHTU4BaAhHQK60ZpA2Q4l1fZQoaAZHQG4qfwRXfZVoB01GAWgIR0CutHkQf6oEdX2UKGgGR0Bx891eSjgyaAdNCAFoCEdArrS6YG+sYHV9lChoBkdAcBxR0lqrR2gHTTcBaAhHQK69gz1K5Cp1fZQoaAZHQG1cKxLTQVtoB01QAWgIR0CuvZLE1l5GdX2UKGgGR0BxUU+lj3EiaAdNCgFoCEdArr2Yjv/ipHV9lChoBkdAbuJ3nIQvpWgHTRABaAhHQK69+6f8Mux1fZQoaAZHQHIaC9/SYw9oB00pAWgIR0CuvkJSiudPdX2UKGgGR0BwobH4oJAuaAdNGAFoCEdArr609jgAInV9lChoBkdAculM98qnWWgHTUgBaAhHQK6+0oqkM1F1fZQoaAZHQG6BaP8yeqdoB00iAWgIR0CuwHxrJr+HdX2UKGgGR0ByHOkgwGnoaAdNDwFoCEdArsEwaBI4EXV9lChoBkdAbueeI2wV02gHTbIBaAhHQK7BkvugHu91fZQoaAZHQHDVp4SpR41oB00mAWgIR0CuwhRIjGDMdX2UKGgGR0Bwut96Tnq3aAdNfwFoCEdArsIdd1MdtHV9lChoBkdAcIpYGdI5HWgHTQ4BaAhHQK7CRfHggox1fZQoaAZHQG/BuO0b961oB00sAWgIR0CuwracRUWEdX2UKGgGR0BuOORNh3JQaAdNJQFoCEdArsMAXqJMx3V9lChoBkdActAXHR1HOWgHTSoBaAhHQK7DJ7OVxCJ1fZQoaAZHQHAjs9wFTvRoB01zAWgIR0Cuw1SUkfLcdX2UKGgGR0ByS2+VTrE+aAdNYAFoCEdArsNyL876pHV9lChoBkdAcucwy6+WW2gHTYkBaAhHQK7Dm9IPK+11fZQoaAZHQHBy20iQkopoB00tAWgIR0Cuw9GNzbN9dX2UKGgGR0BuglfLLZBcaAdNKAFoCEdArsQb2SMcZXV9lChoBkdAbNdawD/2kGgHTQ4BaAhHQK7ELAzpHI91fZQoaAZHQHFqq5f+judoB00fAWgIR0CuxJh3aBZqdX2UKGgGR0BuIUe2d/ayaAdNOAFoCEdArscZ2bG3nnV9lChoBkdAbqWl2vB7/mgHTTcBaAhHQK7H+qaw2VF1fZQoaAZHQG+bUvXbudBoB00sAWgIR0CuyC4Vh1DCdX2UKGgGR0BM5mxt52QoaAdL12gIR0CuyHQV9F4LdX2UKGgGR0BwbkuGsV+JaAdNAgFoCEdArsiPuJDVpnV9lChoBkdAbiSiKR+z+mgHTToBaAhHQK7JMK508vF1fZQoaAZHQG/qPeHi3odoB006AWgIR0CuyV0/wAlwdX2UKGgGR0BxdtLCemNzaAdNRwFoCEdArsmL3AVO9HV9lChoBkdAb4x38n/kvWgHTSEBaAhHQK7Jk9oN/fB1fZQoaAZHQHE28gyM1j1oB007AWgIR0CuycDgQ6IWdX2UKGgGR0Bx117gKnejaAdNHAFoCEdArsnA1LrX2HV9lChoBkdAbY9O+IuXeGgHTSABaAhHQK7J+ir1dxB1fZQoaAZHQHDpZQDV6NVoB00lAWgIR0CuypMI/qxDdX2UKGgGR0BxDZ09yLhraAdNZQFoCEdArsrk8FINE3V9lChoBkdAcXg50r9VFWgHTToBaAhHQK7K6tpVS4x1fZQoaAZHQHD3hxPwd81oB003AWgIR0CuyyYCp3otdX2UKGgGR0BvBNDjR2KVaAdNHwFoCEdArsyZt1p0wXV9lChoBkdAcGd0a6z3RGgHTRsBaAhHQK7NQexOclR1fZQoaAZHQG4FD1PFefJoB00TAWgIR0CuzUmy5Zr6dX2UKGgGR0BxAI/+sHSnaAdNLwFoCEdArs2CH/Lkj3V9lChoBkdAbHqxASnLq2gHTQgBaAhHQK7NsHKOktV1fZQoaAZHQHGrPc8DB/JoB00NAWgIR0CuzfA93bEhdX2UKGgGR0Bws0z+FUQ1aAdNSAFoCEdArs5aUJOWSnV9lChoBkdAbErM/yGzr2gHTSYBaAhHQK7OZIvJzT51fZQoaAZHQHE1vc32mHhoB00iAWgIR0CuzoDMFEApdX2UKGgGR0BwRsfKZDzAaAdNTgFoCEdArs7RW/8EV3V9lChoBkdAbokfWcz68GgHTScBaAhHQK7PTSa3I+51fZQoaAZHQHCrP5pJwsJoB00gAWgIR0Cuz5K4x1xLdX2UKGgGR0BrUfk5p8F7aAdNZwFoCEdArs/Tj1f3OHV9lChoBkdAcKnKgIyCWmgHTXkBaAhHQK7P6rzXjEN1fZQoaAZHQHBIvzSThYNoB00xAWgIR0Cu0CkuYhMbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e849bbd47f0e271e177267d78f336ad5782af1631f0bd55cc2e62640be07e6a
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7969dea1dbd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7969dea1dc60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7969dea1dcf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7969dea1dd80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7969dea1de10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7969dea1dea0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7969dea1df30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7969dea1dfc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7969dea1e050>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7969dea1e0e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7969dea1e170>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7969dea1e200>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7969df32cf00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1708432625481486448,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAljb11H+s+9H6bPS93h75zlQQ7cndZPQAAAAAAAAAAzW1gPYzyTT5GYm6+ttlEvki/M70axhi9AAAAAAAAAAAAgN47VBuHPj0eRL2aaQq+QVrVuyO9X70AAAAAAAAAAJqRuL04B/67puwuvIkOCD2RgGQ9vvHdvQAAgD8AAIA/mnk1vJFTgj/TmOQ61wKfvm+YbzuWhJ+8AAAAAAAAAABe/pa+SAWsP4lrDL/h+MC+SmOvvl82C70AAAAAAAAAALPxFr4uhp0/0x0NvzZ2sL4TW0K+ds8qvgAAAAAAAAAAAObuPE32BD7gpRc+gR5bvikRHT5VOwe8AAAAAAAAAAAmVMG9UpDOuUZq7LoCIny2w3z4OzvQCzoAAIA/AAAAAABG6zxTBOo+ng1DPEZbmr5PmIY93tcUPQAAAAAAAAAAkCqNvgaNjT/s/gy+4dXKvlracr77fJo7AAAAAAAAAADNCWg+iBgAP9G6xr6NQo2+E3xtvaJa9b0AAAAAAAAAAM1iCb7RgD4/ys42PqtWpr66s488/qgqPQAAAAAAAAAA/T6KPiOGeD+kCYY9+gK6vuiadz59k2w8AAAAAAAAAABNB3I9qfQhPoZPELuXmz2+w8CvPYWycr0AAAAAAAAAAMYkDT5WvCU/ojPTvLH7kb6ns249+pGXugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGfeBH09QqMAWyUTUQBjAF0lEdArqWTCaZx73V9lChoBkdAb1XDiwSrYGgHTQ0BaAhHQK6mbNHH3lF1fZQoaAZHQHJNzY/Vy3loB00FAWgIR0CuppFC9h7WdX2UKGgGR0BwjhBhQWN4aAdNKAFoCEdArqaq3iJfpnV9lChoBkdAbcc9sabWmWgHTQsBaAhHQK6m0uSOinJ1fZQoaAZHQHBII2OyVwBoB00uAWgIR0Cupvi2UjcEdX2UKGgGR0Bxfa6oVEeAaAdNZAFoCEdArqcUO3DvVnV9lChoBkdAbxPOVPepGWgHTSYBaAhHQK6ncb5M10l1fZQoaAZHQHBWUleF+NNoB00FAWgIR0CuqF/xlQMydX2UKGgGR0Bxmp60IC2daAdNLgFoCEdArqh7WPLgXXV9lChoBkdATXWkadc0L2gHS/VoCEdArqkQ7eVLSXV9lChoBkdAcEngzxgAqGgHTT8BaAhHQK6pPOjZcs11fZQoaAZHQHC2zfJmukloB01IAWgIR0CuqXqLjxTbdX2UKGgGR0BzGxe5WilBaAdNggFoCEdArqmG10DEFXV9lChoBkdAcdQEAYHgP2gHTSMBaAhHQK6qOpON5t51fZQoaAZHQHH3kQbuMMtoB00JAWgIR0CuqrEd/8VIdX2UKGgGR0BtY8rd30PIaAdNaAFoCEdArqsR8pkPMHV9lChoBkdAcbvw97ngYWgHTeEBaAhHQK6rNkzXSSh1fZQoaAZHQHItu6qbSZ1oB00sAWgIR0Cuq4+nAIppdX2UKGgGR0Bx0k35vcagaAdNHwFoCEdArquztmcvunV9lChoBkdAcRxs4T9KmWgHTT4BaAhHQK6rw1YyO7x1fZQoaAZHQHCT6OLiuMdoB00vAWgIR0Cuq8rcj7hvdX2UKGgGR0Btsa28Zk08aAdNSAFoCEdArqyBM36yjnV9lChoBkdAcaJr433pOmgHTTUBaAhHQK6toGlhw2l1fZQoaAZHQEecBmwqy4ZoB0vVaAhHQK6t5alk6Lh1fZQoaAZHQHAOP+0gKWtoB00DAWgIR0CurepTdcjadX2UKGgGR0BzIJWjoIOZaAdNHQFoCEdArq34JHAh0XV9lChoBkdAcOZ6xxDLKWgHTUIBaAhHQK6uBxYq5LB1fZQoaAZHQHKlTXjENvxoB00PAWgIR0CuribsWweOdX2UKGgGR0BxcsIu5BkaaAdNOQFoCEdArq6FipeeF3V9lChoBkdAcodZUDMeOmgHTbkBaAhHQK6u/cHnln11fZQoaAZHQFE4khA4XGhoB0vcaAhHQK6vs0+C9RJ1fZQoaAZHQGzBPSUkfLdoB00oAWgIR0CusBmJN0vHdX2UKGgGR0Bw9XSc9W6taAdNCQFoCEdArrCAGdI5HXV9lChoBkdAcXacWj4592gHTSEBaAhHQK6wlKcNH6N1fZQoaAZHQHDa9TtLL6loB00sAWgIR0CusKIfjjrBdX2UKGgGR0Bwkj5zo2XLaAdNKgFoCEdArrFpD/lyR3V9lChoBkdAcAKe7cwg1WgHTS4BaAhHQK6xc1Z1V5t1fZQoaAZHQG8pig00m+loB01JAWgIR0CusvFc6eXidX2UKGgGR0BtuXIbOu7paAdNDAFoCEdArrNMXvYvnXV9lChoBkdAcQ2L2pQ1rWgHTT0BaAhHQK6zzx95Qgt1fZQoaAZHQHLFi5mRNh5oB004AWgIR0Cus/N2cJ+ldX2UKGgGR0Bw52UeMhouaAdNRQFoCEdArrQ0QI2OyXV9lChoBkdAcbAcslLOA2gHTU4BaAhHQK60ZpA2Q4l1fZQoaAZHQG4qfwRXfZVoB01GAWgIR0CutHkQf6oEdX2UKGgGR0Bx891eSjgyaAdNCAFoCEdArrS6YG+sYHV9lChoBkdAcBxR0lqrR2gHTTcBaAhHQK69gz1K5Cp1fZQoaAZHQG1cKxLTQVtoB01QAWgIR0CuvZLE1l5GdX2UKGgGR0BxUU+lj3EiaAdNCgFoCEdArr2Yjv/ipHV9lChoBkdAbuJ3nIQvpWgHTRABaAhHQK69+6f8Mux1fZQoaAZHQHIaC9/SYw9oB00pAWgIR0CuvkJSiudPdX2UKGgGR0BwobH4oJAuaAdNGAFoCEdArr609jgAInV9lChoBkdAculM98qnWWgHTUgBaAhHQK6+0oqkM1F1fZQoaAZHQG6BaP8yeqdoB00iAWgIR0CuwHxrJr+HdX2UKGgGR0ByHOkgwGnoaAdNDwFoCEdArsEwaBI4EXV9lChoBkdAbueeI2wV02gHTbIBaAhHQK7BkvugHu91fZQoaAZHQHDVp4SpR41oB00mAWgIR0CuwhRIjGDMdX2UKGgGR0Bwut96Tnq3aAdNfwFoCEdArsIdd1MdtHV9lChoBkdAcIpYGdI5HWgHTQ4BaAhHQK7CRfHggox1fZQoaAZHQG/BuO0b961oB00sAWgIR0CuwracRUWEdX2UKGgGR0BuOORNh3JQaAdNJQFoCEdArsMAXqJMx3V9lChoBkdActAXHR1HOWgHTSoBaAhHQK7DJ7OVxCJ1fZQoaAZHQHAjs9wFTvRoB01zAWgIR0Cuw1SUkfLcdX2UKGgGR0ByS2+VTrE+aAdNYAFoCEdArsNyL876pHV9lChoBkdAcucwy6+WW2gHTYkBaAhHQK7Dm9IPK+11fZQoaAZHQHBy20iQkopoB00tAWgIR0Cuw9GNzbN9dX2UKGgGR0BuglfLLZBcaAdNKAFoCEdArsQb2SMcZXV9lChoBkdAbNdawD/2kGgHTQ4BaAhHQK7ELAzpHI91fZQoaAZHQHFqq5f+judoB00fAWgIR0CuxJh3aBZqdX2UKGgGR0BuIUe2d/ayaAdNOAFoCEdArscZ2bG3nnV9lChoBkdAbqWl2vB7/mgHTTcBaAhHQK7H+qaw2VF1fZQoaAZHQG+bUvXbudBoB00sAWgIR0CuyC4Vh1DCdX2UKGgGR0BM5mxt52QoaAdL12gIR0CuyHQV9F4LdX2UKGgGR0BwbkuGsV+JaAdNAgFoCEdArsiPuJDVpnV9lChoBkdAbiSiKR+z+mgHTToBaAhHQK7JMK508vF1fZQoaAZHQG/qPeHi3odoB006AWgIR0CuyV0/wAlwdX2UKGgGR0BxdtLCemNzaAdNRwFoCEdArsmL3AVO9HV9lChoBkdAb4x38n/kvWgHTSEBaAhHQK7Jk9oN/fB1fZQoaAZHQHE28gyM1j1oB007AWgIR0CuycDgQ6IWdX2UKGgGR0Bx117gKnejaAdNHAFoCEdArsnA1LrX2HV9lChoBkdAbY9O+IuXeGgHTSABaAhHQK7J+ir1dxB1fZQoaAZHQHDpZQDV6NVoB00lAWgIR0CuypMI/qxDdX2UKGgGR0BxDZ09yLhraAdNZQFoCEdArsrk8FINE3V9lChoBkdAcXg50r9VFWgHTToBaAhHQK7K6tpVS4x1fZQoaAZHQHD3hxPwd81oB003AWgIR0CuyyYCp3otdX2UKGgGR0BvBNDjR2KVaAdNHwFoCEdArsyZt1p0wXV9lChoBkdAcGd0a6z3RGgHTRsBaAhHQK7NQexOclR1fZQoaAZHQG4FD1PFefJoB00TAWgIR0CuzUmy5Zr6dX2UKGgGR0BxAI/+sHSnaAdNLwFoCEdArs2CH/Lkj3V9lChoBkdAbHqxASnLq2gHTQgBaAhHQK7NsHKOktV1fZQoaAZHQHGrPc8DB/JoB00NAWgIR0CuzfA93bEhdX2UKGgGR0Bws0z+FUQ1aAdNSAFoCEdArs5aUJOWSnV9lChoBkdAbErM/yGzr2gHTSYBaAhHQK7OZIvJzT51fZQoaAZHQHE1vc32mHhoB00iAWgIR0CuzoDMFEApdX2UKGgGR0BwRsfKZDzAaAdNTgFoCEdArs7RW/8EV3V9lChoBkdAbokfWcz68GgHTScBaAhHQK7PTSa3I+51fZQoaAZHQHCrP5pJwsJoB00gAWgIR0Cuz5K4x1xLdX2UKGgGR0BrUfk5p8F7aAdNZwFoCEdArs/Tj1f3OHV9lChoBkdAcKnKgIyCWmgHTXkBaAhHQK7P6rzXjEN1fZQoaAZHQHBIvzSThYNoB00xAWgIR0Cu0CkuYhMbdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e5930df6d8d2d66a77473023802545fd423f3a1a42bca2d21f3a2034e3a6d52
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:759d3c900faafff2db25a65a3c6024fec4367536b0b02a505d0f77a3e461ced9
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.25429300000002, "std_reward": 18.212149470732026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-20T13:27:13.433589"}