File size: 3,105 Bytes
eb1bc74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
license: other
base_model: meta-llama/Meta-Llama-3-8B
tags:
- generated_from_trainer
model-index:
- name: no-inputs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: awilliamson/horses-pp
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./no-inputs
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
wandb_project: derby
wandb_entity: willfulbytes
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch:
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_offload_params: true
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
special_tokens:
pad_token: <|end_of_text|>
tokens:
- <|start_St|>
- <|end_St|>
- <|start_1/4|>
- <|end_1/4|>
- <|start_1/2|>
- <|end_1/2|>
- <|start_3/8|>
- <|end_3/8|>
- <|start_3/4|>
- <|end_4/4|>
- <|start_Str|>
- <|end_Str|>
- <|start_Fin|>
- <|end_Fin|>
- PP1
- PP2
- PP3
- PP4
- PP5
- PP6
- PP7
- PP8
- PP9
- PP10
- PP11
- PP12
- PP13
- PP14
- PP15
- PP16
- PP17
- PP18
- PP19
- PP20
```
</details><br>
# no-inputs
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 2
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|