Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
thumbnail:
|
5 |
+
tags:
|
6 |
+
- text-classification
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- imdb
|
10 |
+
metrics:
|
11 |
+
---
|
12 |
+
|
13 |
+
# IMDB Sentiment Task: roberta-base
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
A simple base roBERTa model trained on the "imdb" dataset.
|
18 |
+
|
19 |
+
## Intended uses & limitations
|
20 |
+
|
21 |
+
#### How to use
|
22 |
+
|
23 |
+
##### Transformers
|
24 |
+
|
25 |
+
```python
|
26 |
+
# Load model and tokenizer
|
27 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
28 |
+
|
29 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
|
32 |
+
# Use pipeline
|
33 |
+
from transformers import pipeline
|
34 |
+
|
35 |
+
model_name = "aychang/roberta-base-imdb"
|
36 |
+
|
37 |
+
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)
|
38 |
+
|
39 |
+
results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."])
|
40 |
+
```
|
41 |
+
|
42 |
+
##### AdaptNLP
|
43 |
+
|
44 |
+
```python
|
45 |
+
from adaptnlp import EasySequenceClassifier
|
46 |
+
|
47 |
+
model_name = "aychang/roberta-base-imdb"
|
48 |
+
texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]
|
49 |
+
|
50 |
+
classifer = EasySequenceClassifier
|
51 |
+
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
|
52 |
+
```
|
53 |
+
|
54 |
+
#### Limitations and bias
|
55 |
+
|
56 |
+
This is minimal language model trained on a benchmark dataset.
|
57 |
+
|
58 |
+
## Training data
|
59 |
+
|
60 |
+
IMDB https://huggingface.co/datasets/imdb
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
#### Hardware
|
65 |
+
One V100
|
66 |
+
|
67 |
+
#### Hyperparameters and Training Args
|
68 |
+
```python
|
69 |
+
from transformers import TrainingArguments
|
70 |
+
|
71 |
+
training_args = TrainingArguments(
|
72 |
+
output_dir='./models',
|
73 |
+
overwrite_output_dir=False,
|
74 |
+
num_train_epochs=2,
|
75 |
+
per_device_train_batch_size=8,
|
76 |
+
per_device_eval_batch_size=8,
|
77 |
+
warmup_steps=500,
|
78 |
+
weight_decay=0.01,
|
79 |
+
evaluation_strategy="steps",
|
80 |
+
logging_dir='./logs',
|
81 |
+
fp16=False,
|
82 |
+
eval_steps=800,
|
83 |
+
save_steps=300000
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Eval results
|
88 |
+
|
89 |
+
```
|
90 |
+
{'epoch': 2.0,
|
91 |
+
'eval_accuracy': 0.94668,
|
92 |
+
'eval_f1': array([0.94603457, 0.94731017]),
|
93 |
+
'eval_loss': 0.2578844428062439,
|
94 |
+
'eval_precision': array([0.95762642, 0.93624502]),
|
95 |
+
'eval_recall': array([0.93472, 0.95864]),
|
96 |
+
'eval_runtime': 244.7522,
|
97 |
+
'eval_samples_per_second': 102.144}
|
98 |
+
```
|