aychang commited on
Commit
8e7a06b
1 Parent(s): 6f32283

Add model card

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ thumbnail:
5
+ tags:
6
+ - text-classification
7
+ license: mit
8
+ datasets:
9
+ - imdb
10
+ metrics:
11
+ ---
12
+
13
+ # IMDB Sentiment Task: roberta-base
14
+
15
+ ## Model description
16
+
17
+ A simple base roBERTa model trained on the "imdb" dataset.
18
+
19
+ ## Intended uses & limitations
20
+
21
+ #### How to use
22
+
23
+ ##### Transformers
24
+
25
+ ```python
26
+ # Load model and tokenizer
27
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
28
+
29
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+
32
+ # Use pipeline
33
+ from transformers import pipeline
34
+
35
+ model_name = "aychang/roberta-base-imdb"
36
+
37
+ nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)
38
+
39
+ results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."])
40
+ ```
41
+
42
+ ##### AdaptNLP
43
+
44
+ ```python
45
+ from adaptnlp import EasySequenceClassifier
46
+
47
+ model_name = "aychang/roberta-base-imdb"
48
+ texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]
49
+
50
+ classifer = EasySequenceClassifier
51
+ results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
52
+ ```
53
+
54
+ #### Limitations and bias
55
+
56
+ This is minimal language model trained on a benchmark dataset.
57
+
58
+ ## Training data
59
+
60
+ IMDB https://huggingface.co/datasets/imdb
61
+
62
+ ## Training procedure
63
+
64
+ #### Hardware
65
+ One V100
66
+
67
+ #### Hyperparameters and Training Args
68
+ ```python
69
+ from transformers import TrainingArguments
70
+
71
+ training_args = TrainingArguments(
72
+ output_dir='./models',
73
+ overwrite_output_dir=False,
74
+ num_train_epochs=2,
75
+ per_device_train_batch_size=8,
76
+ per_device_eval_batch_size=8,
77
+ warmup_steps=500,
78
+ weight_decay=0.01,
79
+ evaluation_strategy="steps",
80
+ logging_dir='./logs',
81
+ fp16=False,
82
+ eval_steps=800,
83
+ save_steps=300000
84
+ )
85
+ ```
86
+
87
+ ## Eval results
88
+
89
+ ```
90
+ {'epoch': 2.0,
91
+ 'eval_accuracy': 0.94668,
92
+ 'eval_f1': array([0.94603457, 0.94731017]),
93
+ 'eval_loss': 0.2578844428062439,
94
+ 'eval_precision': array([0.95762642, 0.93624502]),
95
+ 'eval_recall': array([0.93472, 0.95864]),
96
+ 'eval_runtime': 244.7522,
97
+ 'eval_samples_per_second': 102.144}
98
+ ```