Delete finetune.py
Browse files- finetune.py +0 -283
finetune.py
DELETED
@@ -1,283 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
import fire
|
6 |
-
import torch
|
7 |
-
import transformers
|
8 |
-
from datasets import load_dataset
|
9 |
-
|
10 |
-
"""
|
11 |
-
Unused imports:
|
12 |
-
import torch.nn as nn
|
13 |
-
import bitsandbytes as bnb
|
14 |
-
"""
|
15 |
-
|
16 |
-
from peft import (
|
17 |
-
LoraConfig,
|
18 |
-
get_peft_model,
|
19 |
-
get_peft_model_state_dict,
|
20 |
-
prepare_model_for_int8_training,
|
21 |
-
set_peft_model_state_dict,
|
22 |
-
)
|
23 |
-
from transformers import LlamaForCausalLM, LlamaTokenizer
|
24 |
-
|
25 |
-
from utils.prompter import Prompter
|
26 |
-
|
27 |
-
|
28 |
-
def train(
|
29 |
-
# model/data params
|
30 |
-
base_model: str = "./hf_ckpt", # the only required argument
|
31 |
-
data_path: str = "ayuan0324/ocean_only",
|
32 |
-
output_dir: str = "./lora-alpaca",
|
33 |
-
# training hyperparams
|
34 |
-
batch_size: int = 128,
|
35 |
-
micro_batch_size: int = 4,
|
36 |
-
num_epochs: int = 3,
|
37 |
-
learning_rate: float = 1e-4,
|
38 |
-
cutoff_len: int = 512,
|
39 |
-
val_set_size: int = 2000,
|
40 |
-
# lora hyperparams
|
41 |
-
lora_r: int = 8,
|
42 |
-
lora_alpha: int = 16,
|
43 |
-
lora_dropout: float = 0.05,
|
44 |
-
lora_target_modules: List[str] = [
|
45 |
-
"q_proj",
|
46 |
-
"v_proj",
|
47 |
-
],
|
48 |
-
# llm hyperparams
|
49 |
-
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
50 |
-
add_eos_token: bool = False,
|
51 |
-
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
52 |
-
# wandb params
|
53 |
-
wandb_project: str = "",
|
54 |
-
wandb_run_name: str = "",
|
55 |
-
wandb_watch: str = "", # options: false | gradients | all
|
56 |
-
wandb_log_model: str = "", # options: false | true
|
57 |
-
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
|
58 |
-
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
|
59 |
-
):
|
60 |
-
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
61 |
-
print(
|
62 |
-
f"Training Alpaca-LoRA model with params:\n"
|
63 |
-
f"base_model: {base_model}\n"
|
64 |
-
f"data_path: {data_path}\n"
|
65 |
-
f"output_dir: {output_dir}\n"
|
66 |
-
f"batch_size: {batch_size}\n"
|
67 |
-
f"micro_batch_size: {micro_batch_size}\n"
|
68 |
-
f"num_epochs: {num_epochs}\n"
|
69 |
-
f"learning_rate: {learning_rate}\n"
|
70 |
-
f"cutoff_len: {cutoff_len}\n"
|
71 |
-
f"val_set_size: {val_set_size}\n"
|
72 |
-
f"lora_r: {lora_r}\n"
|
73 |
-
f"lora_alpha: {lora_alpha}\n"
|
74 |
-
f"lora_dropout: {lora_dropout}\n"
|
75 |
-
f"lora_target_modules: {lora_target_modules}\n"
|
76 |
-
f"train_on_inputs: {train_on_inputs}\n"
|
77 |
-
f"add_eos_token: {add_eos_token}\n"
|
78 |
-
f"group_by_length: {group_by_length}\n"
|
79 |
-
f"wandb_project: {wandb_project}\n"
|
80 |
-
f"wandb_run_name: {wandb_run_name}\n"
|
81 |
-
f"wandb_watch: {wandb_watch}\n"
|
82 |
-
f"wandb_log_model: {wandb_log_model}\n"
|
83 |
-
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
84 |
-
f"prompt template: {prompt_template_name}\n"
|
85 |
-
)
|
86 |
-
assert (
|
87 |
-
base_model
|
88 |
-
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
89 |
-
gradient_accumulation_steps = batch_size // micro_batch_size
|
90 |
-
|
91 |
-
prompter = Prompter(prompt_template_name)
|
92 |
-
|
93 |
-
device_map = "auto"
|
94 |
-
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
95 |
-
ddp = world_size != 1
|
96 |
-
if ddp:
|
97 |
-
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
98 |
-
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
99 |
-
|
100 |
-
# Check if parameter passed or if set within environ
|
101 |
-
use_wandb = len(wandb_project) > 0 or (
|
102 |
-
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
|
103 |
-
)
|
104 |
-
# Only overwrite environ if wandb param passed
|
105 |
-
if len(wandb_project) > 0:
|
106 |
-
os.environ["WANDB_PROJECT"] = wandb_project
|
107 |
-
if len(wandb_watch) > 0:
|
108 |
-
os.environ["WANDB_WATCH"] = wandb_watch
|
109 |
-
if len(wandb_log_model) > 0:
|
110 |
-
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
111 |
-
|
112 |
-
model = LlamaForCausalLM.from_pretrained(
|
113 |
-
base_model,
|
114 |
-
load_in_8bit=True,
|
115 |
-
torch_dtype=torch.float16,
|
116 |
-
device_map=device_map,
|
117 |
-
)
|
118 |
-
|
119 |
-
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
120 |
-
|
121 |
-
tokenizer.pad_token_id = (
|
122 |
-
0 # unk. we want this to be different from the eos token
|
123 |
-
)
|
124 |
-
tokenizer.padding_side = "left" # Allow batched inference
|
125 |
-
|
126 |
-
def tokenize(prompt, add_eos_token=True):
|
127 |
-
# there's probably a way to do this with the tokenizer settings
|
128 |
-
# but again, gotta move fast
|
129 |
-
result = tokenizer(
|
130 |
-
prompt,
|
131 |
-
truncation=True,
|
132 |
-
max_length=cutoff_len,
|
133 |
-
padding=False,
|
134 |
-
return_tensors=None,
|
135 |
-
)
|
136 |
-
if (
|
137 |
-
result["input_ids"][-1] != tokenizer.eos_token_id
|
138 |
-
and len(result["input_ids"]) < cutoff_len
|
139 |
-
and add_eos_token
|
140 |
-
):
|
141 |
-
result["input_ids"].append(tokenizer.eos_token_id)
|
142 |
-
result["attention_mask"].append(1)
|
143 |
-
|
144 |
-
result["labels"] = result["input_ids"].copy()
|
145 |
-
|
146 |
-
return result
|
147 |
-
|
148 |
-
def generate_and_tokenize_prompt(data_point):
|
149 |
-
full_prompt = prompter.generate_prompt(
|
150 |
-
data_point["instruction"],
|
151 |
-
data_point["input"],
|
152 |
-
data_point["output"],
|
153 |
-
)
|
154 |
-
tokenized_full_prompt = tokenize(full_prompt)
|
155 |
-
if not train_on_inputs:
|
156 |
-
user_prompt = prompter.generate_prompt(
|
157 |
-
data_point["instruction"], data_point["input"]
|
158 |
-
)
|
159 |
-
tokenized_user_prompt = tokenize(
|
160 |
-
user_prompt, add_eos_token=add_eos_token
|
161 |
-
)
|
162 |
-
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
163 |
-
|
164 |
-
if add_eos_token:
|
165 |
-
user_prompt_len -= 1
|
166 |
-
|
167 |
-
tokenized_full_prompt["labels"] = [
|
168 |
-
-100
|
169 |
-
] * user_prompt_len + tokenized_full_prompt["labels"][
|
170 |
-
user_prompt_len:
|
171 |
-
] # could be sped up, probably
|
172 |
-
return tokenized_full_prompt
|
173 |
-
|
174 |
-
model = prepare_model_for_int8_training(model)
|
175 |
-
|
176 |
-
config = LoraConfig(
|
177 |
-
r=lora_r,
|
178 |
-
lora_alpha=lora_alpha,
|
179 |
-
target_modules=lora_target_modules,
|
180 |
-
lora_dropout=lora_dropout,
|
181 |
-
bias="none",
|
182 |
-
task_type="CAUSAL_LM",
|
183 |
-
)
|
184 |
-
model = get_peft_model(model, config)
|
185 |
-
|
186 |
-
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
187 |
-
data = load_dataset("json", data_files=data_path)
|
188 |
-
else:
|
189 |
-
data = load_dataset(data_path)
|
190 |
-
|
191 |
-
if resume_from_checkpoint:
|
192 |
-
# Check the available weights and load them
|
193 |
-
checkpoint_name = os.path.join(
|
194 |
-
resume_from_checkpoint, "pytorch_model.bin"
|
195 |
-
) # Full checkpoint
|
196 |
-
if not os.path.exists(checkpoint_name):
|
197 |
-
checkpoint_name = os.path.join(
|
198 |
-
resume_from_checkpoint, "adapter_model.bin"
|
199 |
-
) # only LoRA model - LoRA config above has to fit
|
200 |
-
resume_from_checkpoint = (
|
201 |
-
False # So the trainer won't try loading its state
|
202 |
-
)
|
203 |
-
# The two files above have a different name depending on how they were saved, but are actually the same.
|
204 |
-
if os.path.exists(checkpoint_name):
|
205 |
-
print(f"Restarting from {checkpoint_name}")
|
206 |
-
adapters_weights = torch.load(checkpoint_name)
|
207 |
-
set_peft_model_state_dict(model, adapters_weights)
|
208 |
-
else:
|
209 |
-
print(f"Checkpoint {checkpoint_name} not found")
|
210 |
-
|
211 |
-
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
|
212 |
-
|
213 |
-
if val_set_size > 0:
|
214 |
-
train_val = data["train"].train_test_split(
|
215 |
-
test_size=val_set_size, shuffle=True, seed=42
|
216 |
-
)
|
217 |
-
train_data = (
|
218 |
-
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
219 |
-
)
|
220 |
-
val_data = (
|
221 |
-
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
222 |
-
)
|
223 |
-
else:
|
224 |
-
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
225 |
-
val_data = None
|
226 |
-
|
227 |
-
if not ddp and torch.cuda.device_count() > 1:
|
228 |
-
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
229 |
-
model.is_parallelizable = True
|
230 |
-
model.model_parallel = True
|
231 |
-
|
232 |
-
trainer = transformers.Trainer(
|
233 |
-
model=model,
|
234 |
-
train_dataset=train_data,
|
235 |
-
eval_dataset=val_data,
|
236 |
-
args=transformers.TrainingArguments(
|
237 |
-
per_device_train_batch_size=micro_batch_size,
|
238 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
239 |
-
warmup_steps=100,
|
240 |
-
num_train_epochs=num_epochs,
|
241 |
-
learning_rate=learning_rate,
|
242 |
-
fp16=True,
|
243 |
-
logging_steps=10,
|
244 |
-
optim="adamw_torch",
|
245 |
-
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
246 |
-
save_strategy="steps",
|
247 |
-
eval_steps=200 if val_set_size > 0 else None,
|
248 |
-
save_steps=200,
|
249 |
-
output_dir=output_dir,
|
250 |
-
save_total_limit=3,
|
251 |
-
load_best_model_at_end=True if val_set_size > 0 else False,
|
252 |
-
ddp_find_unused_parameters=False if ddp else None,
|
253 |
-
group_by_length=group_by_length,
|
254 |
-
report_to="wandb" if use_wandb else None,
|
255 |
-
run_name=wandb_run_name if use_wandb else None,
|
256 |
-
),
|
257 |
-
data_collator=transformers.DataCollatorForSeq2Seq(
|
258 |
-
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
259 |
-
),
|
260 |
-
)
|
261 |
-
model.config.use_cache = False
|
262 |
-
|
263 |
-
old_state_dict = model.state_dict
|
264 |
-
model.state_dict = (
|
265 |
-
lambda self, *_, **__: get_peft_model_state_dict(
|
266 |
-
self, old_state_dict()
|
267 |
-
)
|
268 |
-
).__get__(model, type(model))
|
269 |
-
|
270 |
-
if torch.__version__ >= "2" and sys.platform != "win32":
|
271 |
-
model = torch.compile(model)
|
272 |
-
|
273 |
-
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
274 |
-
|
275 |
-
model.save_pretrained(output_dir)
|
276 |
-
|
277 |
-
print(
|
278 |
-
"\n If there's a warning about missing keys above, please disregard :)"
|
279 |
-
)
|
280 |
-
|
281 |
-
|
282 |
-
if __name__ == "__main__":
|
283 |
-
fire.Fire(train)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|