ayushtues commited on
Commit
5f4eec8
1 Parent(s): 1a70fad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -24
README.md CHANGED
@@ -31,15 +31,25 @@ The model is created by Dongxu Li, Junnan Li, Steven C.H. Hoi.
31
  ```python
32
  from diffusers.pipelines import BlipDiffusionPipeline
33
  from diffusers.utils import load_image
34
- blip_diffusion_pipe= BlipDiffusionPipeline.from_pretrained('ayushtues/blipdiffusion')
35
- blip_diffusion_pipe.to('cuda')
 
 
 
 
36
  cond_subject = "dog"
37
  tgt_subject = "dog"
38
  text_prompt_input = "swimming underwater"
39
- cond_image = load_image("https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg")
 
 
 
 
 
40
  guidance_scale = 7.5
41
- num_inference_steps = 50
42
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
 
43
  output = blip_diffusion_pipe(
44
  text_prompt_input,
45
  cond_image,
@@ -50,8 +60,8 @@ output = blip_diffusion_pipe(
50
  neg_prompt=negative_prompt,
51
  height=512,
52
  width=512,
53
- )
54
- output[0][0].save("image.png")
55
  ```
56
  Input Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg" style="width:500px;"/>
57
 
@@ -63,22 +73,32 @@ Generatred Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffu
63
  from diffusers.pipelines import BlipDiffusionControlNetPipeline
64
  from diffusers.utils import load_image
65
  from controlnet_aux import CannyDetector
66
- blip_diffusion_pipe= BlipDiffusionControlNetPipeline.from_pretrained("ayushtues/blipdiffusion-controlnet")
67
- blip_diffusion_pipe.to('cuda')
68
- style_subject = "flower" # subject that defines the style
 
 
 
69
  tgt_subject = "teapot" # subject to generate.
70
  text_prompt = "on a marble table"
71
- cldm_cond_image = load_image("https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg").resize((512, 512))
 
 
 
72
  canny = CannyDetector()
73
- cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type='pil')
74
- style_image = load_image("https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg")
 
 
 
75
  guidance_scale = 7.5
76
  num_inference_steps = 50
77
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
 
78
  output = blip_diffusion_pipe(
79
  text_prompt,
80
  style_image,
81
- cldm_cond_image,
82
  style_subject,
83
  tgt_subject,
84
  guidance_scale=guidance_scale,
@@ -86,8 +106,8 @@ output = blip_diffusion_pipe(
86
  neg_prompt=negative_prompt,
87
  height=512,
88
  width=512,
89
- )
90
- output[0][0].save("image.png")
91
  ```
92
 
93
  Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
@@ -99,24 +119,34 @@ Generated Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffus
99
  from diffusers.pipelines import BlipDiffusionControlNetPipeline
100
  from diffusers.utils import load_image
101
  from controlnet_aux import HEDdetector
102
- blip_diffusion_pipe= BlipDiffusionControlNetPipeline.from_pretrained("ayushtues/blipdiffusion-controlnet")
 
 
 
103
  controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
104
  blip_diffusion_pipe.controlnet = controlnet
105
- blip_diffusion_pipe.to('cuda')
106
- style_subject = "flower" # subject that defines the style
 
107
  tgt_subject = "bag" # subject to generate.
108
  text_prompt = "on a table"
109
- cldm_cond_image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-scribble/resolve/main/images/bag.png" ).resize((512, 512))
 
 
110
  hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
111
  cldm_cond_image = hed(cldm_cond_image)
112
- style_image = load_image("https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg")
 
 
 
113
  guidance_scale = 7.5
114
  num_inference_steps = 50
115
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
 
116
  output = blip_diffusion_pipe(
117
  text_prompt,
118
  style_image,
119
- cldm_cond_image,
120
  style_subject,
121
  tgt_subject,
122
  guidance_scale=guidance_scale,
@@ -124,8 +154,8 @@ output = blip_diffusion_pipe(
124
  neg_prompt=negative_prompt,
125
  height=512,
126
  width=512,
127
- )
128
- output[0][0].save("image.png"')
129
  ```
130
 
131
  Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
@@ -164,4 +194,5 @@ If you find this repository useful in your research, please cite:
164
  archivePrefix={arXiv},
165
  primaryClass={cs.CV}
166
  }
167
- ```
 
 
31
  ```python
32
  from diffusers.pipelines import BlipDiffusionPipeline
33
  from diffusers.utils import load_image
34
+ import torch
35
+
36
+ blip_diffusion_pipe = BlipDiffusionPipeline.from_pretrained(
37
+ "ayushtues/blipdiffusion", torch_dtype=torch.float16
38
+ ).to("cuda")
39
+
40
  cond_subject = "dog"
41
  tgt_subject = "dog"
42
  text_prompt_input = "swimming underwater"
43
+
44
+ cond_image = load_image(
45
+ "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg"
46
+ )
47
+
48
+ iter_seed = 88888
49
  guidance_scale = 7.5
50
+ num_inference_steps = 25
51
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
52
+
53
  output = blip_diffusion_pipe(
54
  text_prompt_input,
55
  cond_image,
 
60
  neg_prompt=negative_prompt,
61
  height=512,
62
  width=512,
63
+ ).images
64
+ output[0].save("image.png")
65
  ```
66
  Input Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg" style="width:500px;"/>
67
 
 
73
  from diffusers.pipelines import BlipDiffusionControlNetPipeline
74
  from diffusers.utils import load_image
75
  from controlnet_aux import CannyDetector
76
+
77
+ blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
78
+ "ayushtues/blipdiffusion-controlnet", torch_dtype=torch.float16
79
+ ).to("cuda")
80
+
81
+ style_subject = "flower" # subject that defines the style
82
  tgt_subject = "teapot" # subject to generate.
83
  text_prompt = "on a marble table"
84
+
85
+ cldm_cond_image = load_image(
86
+ "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg"
87
+ ).resize((512, 512))
88
  canny = CannyDetector()
89
+ cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")
90
+ style_image = load_image(
91
+ "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
92
+ )
93
+
94
  guidance_scale = 7.5
95
  num_inference_steps = 50
96
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
97
+
98
  output = blip_diffusion_pipe(
99
  text_prompt,
100
  style_image,
101
+ cldm_cond_image,
102
  style_subject,
103
  tgt_subject,
104
  guidance_scale=guidance_scale,
 
106
  neg_prompt=negative_prompt,
107
  height=512,
108
  width=512,
109
+ ).images
110
+ output[0].save("image.png")
111
  ```
112
 
113
  Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
 
119
  from diffusers.pipelines import BlipDiffusionControlNetPipeline
120
  from diffusers.utils import load_image
121
  from controlnet_aux import HEDdetector
122
+
123
+ blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
124
+ "ayushtues/blipdiffusion-controlnet"
125
+ )
126
  controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
127
  blip_diffusion_pipe.controlnet = controlnet
128
+ blip_diffusion_pipe.to("cuda")
129
+
130
+ style_subject = "flower" # subject that defines the style
131
  tgt_subject = "bag" # subject to generate.
132
  text_prompt = "on a table"
133
+ cldm_cond_image = load_image(
134
+ "https://huggingface.co/lllyasviel/sd-controlnet-scribble/resolve/main/images/bag.png"
135
+ ).resize((512, 512))
136
  hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
137
  cldm_cond_image = hed(cldm_cond_image)
138
+ style_image = load_image(
139
+ "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
140
+ )
141
+
142
  guidance_scale = 7.5
143
  num_inference_steps = 50
144
  negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
145
+
146
  output = blip_diffusion_pipe(
147
  text_prompt,
148
  style_image,
149
+ cldm_cond_image,
150
  style_subject,
151
  tgt_subject,
152
  guidance_scale=guidance_scale,
 
154
  neg_prompt=negative_prompt,
155
  height=512,
156
  width=512,
157
+ ).images
158
+ output[0].save("image.png")
159
  ```
160
 
161
  Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
 
194
  archivePrefix={arXiv},
195
  primaryClass={cs.CV}
196
  }
197
+ ```
198
+