FallenMerick commited on
Commit
88f9671
1 Parent(s): 56a500d

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ABX-AI__Silver-Sun-v2-11B/.ipynb_checkpoints/results_2024-07-02T00-46-34.040470-checkpoint.json +177 -0
  2. ABX-AI__Silver-Sun-v2-11B/results_2024-07-02T00-46-34.040470.json +177 -0
  3. BlueNipples__SnowLotus-v2-10.7B/.ipynb_checkpoints/results_2024-07-01T22-45-32.913168-checkpoint.json +177 -0
  4. BlueNipples__SnowLotus-v2-10.7B/results_2024-07-01T22-45-32.913168.json +177 -0
  5. Crimvael__Raphael-7B/.ipynb_checkpoints/results_2024-07-02T03-45-26.455365-checkpoint.json +177 -0
  6. Crimvael__Raphael-7B/results_2024-07-02T03-45-26.455365.json +177 -0
  7. Delcos__Mistral-Pygmalion-7b/.ipynb_checkpoints/results_2024-07-02T07-11-52.058605-checkpoint.json +177 -0
  8. Delcos__Mistral-Pygmalion-7b/results_2024-07-02T07-11-52.058605.json +177 -0
  9. FallenMerick__Chewy-Lemon-Cookie-11B/.ipynb_checkpoints/results_2024-07-01T19-12-13.115090-checkpoint.json +177 -0
  10. FallenMerick__Chewy-Lemon-Cookie-11B/results_2024-07-01T19-12-13.115090.json +177 -0
  11. FallenMerick__Chunky-Lemon-Cookie-11B/.ipynb_checkpoints/results_2024-07-01T18-34-32.911166-checkpoint.json +177 -0
  12. FallenMerick__Chunky-Lemon-Cookie-11B/results_2024-07-01T18-34-32.911166.json +177 -0
  13. FallenMerick__Iced-Lemon-Cookie-7B/.ipynb_checkpoints/results_2024-06-29T01-06-21.272851-checkpoint.json +0 -0
  14. FallenMerick__Iced-Lemon-Cookie-7B/results_2024-06-29T01-06-21.272851.json +0 -0
  15. FallenMerick__Smart-Lemon-Cookie-7B/.ipynb_checkpoints/results_2024-06-28T14-56-07.716918-checkpoint.json +0 -0
  16. FallenMerick__Smart-Lemon-Cookie-7B/results_2024-06-28T14-56-07.716918.json +0 -0
  17. Himitsui__KuroMitsu-11B/.ipynb_checkpoints/results_2024-07-01T22-05-02.101817-checkpoint.json +177 -0
  18. Himitsui__KuroMitsu-11B/results_2024-07-01T22-05-02.101817.json +177 -0
  19. HuggingFaceH4__zephyr-7b-beta/.ipynb_checkpoints/results_2024-07-02T05-33-39.653334-checkpoint.json +177 -0
  20. HuggingFaceH4__zephyr-7b-beta/results_2024-07-02T05-33-39.653334.json +177 -0
  21. Intel__neural-chat-7b-v3-1/.ipynb_checkpoints/results_2024-06-27T21-55-55.507233-checkpoint.json +177 -0
  22. Intel__neural-chat-7b-v3-1/results_2024-06-27T21-55-55.507233.json +177 -0
  23. KatyTheCutie__LemonadeRP-4.5.3/.ipynb_checkpoints/results_2024-07-02T08-08-46.956689-checkpoint.json +177 -0
  24. KatyTheCutie__LemonadeRP-4.5.3/results_2024-07-02T08-08-46.956689.json +177 -0
  25. KoboldAI__Mistral-7B-Erebus-v3/.ipynb_checkpoints/results_2024-06-28T02-01-18.290687-checkpoint.json +177 -0
  26. KoboldAI__Mistral-7B-Erebus-v3/results_2024-06-28T02-01-18.290687.json +177 -0
  27. KoboldAI__Mistral-7B-Holodeck-1/.ipynb_checkpoints/results_2024-06-28T01-04-59.368025-checkpoint.json +177 -0
  28. KoboldAI__Mistral-7B-Holodeck-1/results_2024-06-28T01-04-59.368025.json +177 -0
  29. NeverSleep__Mistral-11B-SynthIAirOmniMix/.ipynb_checkpoints/results_2024-07-01T23-28-29.609057-checkpoint.json +177 -0
  30. NeverSleep__Mistral-11B-SynthIAirOmniMix/results_2024-07-01T23-28-29.609057.json +177 -0
  31. Norquinal__Mistral-7B-claude-chat/.ipynb_checkpoints/results_2024-07-02T07-25-06.524375-checkpoint.json +177 -0
  32. Norquinal__Mistral-7B-claude-chat/results_2024-07-02T07-25-06.524375.json +177 -0
  33. NousResearch__Hermes-2-Pro-Mistral-7B/.ipynb_checkpoints/results_2024-06-28T00-36-44.931474-checkpoint.json +177 -0
  34. NousResearch__Hermes-2-Pro-Mistral-7B/results_2024-06-28T00-36-44.931474.json +177 -0
  35. NousResearch__Nous-Capybara-7B-V1.9/.ipynb_checkpoints/results_2024-07-02T07-40-59.772360-checkpoint.json +177 -0
  36. NousResearch__Nous-Capybara-7B-V1.9/results_2024-07-02T07-40-59.772360.json +177 -0
  37. NousResearch__Nous-Hermes-2-SOLAR-10.7B/.ipynb_checkpoints/results_2024-07-01T22-46-11.267534-checkpoint.json +177 -0
  38. NousResearch__Nous-Hermes-2-SOLAR-10.7B/results_2024-07-01T22-46-11.267534.json +177 -0
  39. Open-Orca__Mistral-7B-OpenOrca/.ipynb_checkpoints/results_2024-06-27T21-00-54.306241-checkpoint.json +177 -0
  40. Open-Orca__Mistral-7B-OpenOrca/results_2024-06-27T21-00-54.306241.json +177 -0
  41. SanjiWatsuki__Kunoichi-7B/.ipynb_checkpoints/results_2024-06-27T20-34-47.197919-checkpoint.json +177 -0
  42. SanjiWatsuki__Kunoichi-7B/results_2024-06-27T20-34-47.197919.json +177 -0
  43. SanjiWatsuki__Loyal-Macaroni-Maid-7B/.ipynb_checkpoints/results_2024-07-02T06-14-04.529485-checkpoint.json +177 -0
  44. SanjiWatsuki__Loyal-Macaroni-Maid-7B/results_2024-07-02T06-14-04.529485.json +177 -0
  45. SanjiWatsuki__Silicon-Maid-7B/.ipynb_checkpoints/results_2024-07-02T06-55-56.426785-checkpoint.json +177 -0
  46. SanjiWatsuki__Silicon-Maid-7B/results_2024-07-02T06-55-56.426785.json +177 -0
  47. Sao10K__Fimbulvetr-10.7B-v1/.ipynb_checkpoints/results_2024-07-01T21-25-41.128938-checkpoint.json +177 -0
  48. Sao10K__Fimbulvetr-10.7B-v1/results_2024-07-01T21-25-41.128938.json +177 -0
  49. Sao10K__Fimbulvetr-11B-v2/.ipynb_checkpoints/results_2024-06-28T04-32-22.127106-checkpoint.json +177 -0
  50. Sao10K__Fimbulvetr-11B-v2/results_2024-06-28T04-32-22.127106.json +177 -0
ABX-AI__Silver-Sun-v2-11B/.ipynb_checkpoints/results_2024-07-02T00-46-34.040470-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6798446524596694,
5
+ "acc_stderr,none": 0.0046558259808919715,
6
+ "acc_norm,none": 0.8639713204540929,
7
+ "acc_norm_stderr,none": 0.003421183909320265,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 69.92376298818061,
12
+ "eqbench_stderr,none": 2.302476504280005,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=ABX-AI/Silver-Sun-v2-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "052f5514e25a2c0d3622f2aa84c9662ebca41eba",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719878990.231564,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "ABX-AI/Silver-Sun-v2-11B",
168
+ "model_name_sanitized": "ABX-AI__Silver-Sun-v2-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 90285.382371444,
175
+ "end_time": 92495.969871496,
176
+ "total_evaluation_time_seconds": "2210.5875000520027"
177
+ }
ABX-AI__Silver-Sun-v2-11B/results_2024-07-02T00-46-34.040470.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6798446524596694,
5
+ "acc_stderr,none": 0.0046558259808919715,
6
+ "acc_norm,none": 0.8639713204540929,
7
+ "acc_norm_stderr,none": 0.003421183909320265,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 69.92376298818061,
12
+ "eqbench_stderr,none": 2.302476504280005,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=ABX-AI/Silver-Sun-v2-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "052f5514e25a2c0d3622f2aa84c9662ebca41eba",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719878990.231564,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "ABX-AI/Silver-Sun-v2-11B",
168
+ "model_name_sanitized": "ABX-AI__Silver-Sun-v2-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 90285.382371444,
175
+ "end_time": 92495.969871496,
176
+ "total_evaluation_time_seconds": "2210.5875000520027"
177
+ }
BlueNipples__SnowLotus-v2-10.7B/.ipynb_checkpoints/results_2024-07-01T22-45-32.913168-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6488747261501693,
5
+ "acc_stderr,none": 0.004763465139038578,
6
+ "acc_norm,none": 0.834196375224059,
7
+ "acc_norm_stderr,none": 0.0037114419828661186,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 60.53953285457271,
12
+ "eqbench_stderr,none": 2.6096565956249744,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374273,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=BlueNipples/SnowLotus-v2-10.7B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "e655cc010d33dca9a7ac37a640ea45b82fef054a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719871605.6418686,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "BlueNipples/SnowLotus-v2-10.7B",
168
+ "model_name_sanitized": "BlueNipples__SnowLotus-v2-10.7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 82900.70551701,
175
+ "end_time": 85234.842583591,
176
+ "total_evaluation_time_seconds": "2334.1370665809955"
177
+ }
BlueNipples__SnowLotus-v2-10.7B/results_2024-07-01T22-45-32.913168.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6488747261501693,
5
+ "acc_stderr,none": 0.004763465139038578,
6
+ "acc_norm,none": 0.834196375224059,
7
+ "acc_norm_stderr,none": 0.0037114419828661186,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 60.53953285457271,
12
+ "eqbench_stderr,none": 2.6096565956249744,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374273,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=BlueNipples/SnowLotus-v2-10.7B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "e655cc010d33dca9a7ac37a640ea45b82fef054a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719871605.6418686,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "BlueNipples/SnowLotus-v2-10.7B",
168
+ "model_name_sanitized": "BlueNipples__SnowLotus-v2-10.7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 82900.70551701,
175
+ "end_time": 85234.842583591,
176
+ "total_evaluation_time_seconds": "2334.1370665809955"
177
+ }
Crimvael__Raphael-7B/.ipynb_checkpoints/results_2024-07-02T03-45-26.455365-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6527584146584345,
5
+ "acc_stderr,none": 0.004751203378888043,
6
+ "acc_norm,none": 0.8346942840071699,
7
+ "acc_norm_stderr,none": 0.0037069708564110657,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 68.72823492962466,
12
+ "eqbench_stderr,none": 2.1836213516902125,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Crimvael/Raphael-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "c5a262bacfaf9f4a822954223462f428f7cb6290",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719890419.8683555,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Crimvael/Raphael-7B",
168
+ "model_name_sanitized": "Crimvael__Raphael-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 101714.859551874,
175
+ "end_time": 103228.384796742,
176
+ "total_evaluation_time_seconds": "1513.5252448679967"
177
+ }
Crimvael__Raphael-7B/results_2024-07-02T03-45-26.455365.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6527584146584345,
5
+ "acc_stderr,none": 0.004751203378888043,
6
+ "acc_norm,none": 0.8346942840071699,
7
+ "acc_norm_stderr,none": 0.0037069708564110657,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 68.72823492962466,
12
+ "eqbench_stderr,none": 2.1836213516902125,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Crimvael/Raphael-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "c5a262bacfaf9f4a822954223462f428f7cb6290",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719890419.8683555,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Crimvael/Raphael-7B",
168
+ "model_name_sanitized": "Crimvael__Raphael-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 101714.859551874,
175
+ "end_time": 103228.384796742,
176
+ "total_evaluation_time_seconds": "1513.5252448679967"
177
+ }
Delcos__Mistral-Pygmalion-7b/.ipynb_checkpoints/results_2024-07-02T07-11-52.058605-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.571400119498108,
5
+ "acc_stderr,none": 0.004938643787869521,
6
+ "acc_norm,none": 0.7660824536944831,
7
+ "acc_norm_stderr,none": 0.004224552134436904,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 17.344080969420517,
12
+ "eqbench_stderr,none": 3.6133795461572396,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Delcos/Mistral-Pygmalion-7b,trust_remote_code=True",
128
+ "model_num_parameters": 6738415616,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "2cf8706d62541ba6d647562055cdc08bc70500a1",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 32
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719902850.114841,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Delcos/Mistral-Pygmalion-7b",
168
+ "model_name_sanitized": "Delcos__Mistral-Pygmalion-7b",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 114145.16115359,
175
+ "end_time": 115613.988031289,
176
+ "total_evaluation_time_seconds": "1468.8268776990008"
177
+ }
Delcos__Mistral-Pygmalion-7b/results_2024-07-02T07-11-52.058605.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.571400119498108,
5
+ "acc_stderr,none": 0.004938643787869521,
6
+ "acc_norm,none": 0.7660824536944831,
7
+ "acc_norm_stderr,none": 0.004224552134436904,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 17.344080969420517,
12
+ "eqbench_stderr,none": 3.6133795461572396,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Delcos/Mistral-Pygmalion-7b,trust_remote_code=True",
128
+ "model_num_parameters": 6738415616,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "2cf8706d62541ba6d647562055cdc08bc70500a1",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 32
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719902850.114841,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Delcos/Mistral-Pygmalion-7b",
168
+ "model_name_sanitized": "Delcos__Mistral-Pygmalion-7b",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 114145.16115359,
175
+ "end_time": 115613.988031289,
176
+ "total_evaluation_time_seconds": "1468.8268776990008"
177
+ }
FallenMerick__Chewy-Lemon-Cookie-11B/.ipynb_checkpoints/results_2024-07-01T19-12-13.115090-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6618203545110536,
5
+ "acc_stderr,none": 0.004721231637092694,
6
+ "acc_norm,none": 0.843855805616411,
7
+ "acc_norm_stderr,none": 0.0036225013703318895,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 76.2370547740446,
12
+ "eqbench_stderr,none": 1.7148952450726893,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=FallenMerick/Chewy-Lemon-Cookie-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "0f5d0d6d218b3ef034f58eba32d6fe7ac4c237ae",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719858887.6024628,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "FallenMerick/Chewy-Lemon-Cookie-11B",
168
+ "model_name_sanitized": "FallenMerick__Chewy-Lemon-Cookie-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 70182.562797015,
175
+ "end_time": 72435.044500542,
176
+ "total_evaluation_time_seconds": "2252.48170352701"
177
+ }
FallenMerick__Chewy-Lemon-Cookie-11B/results_2024-07-01T19-12-13.115090.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6618203545110536,
5
+ "acc_stderr,none": 0.004721231637092694,
6
+ "acc_norm,none": 0.843855805616411,
7
+ "acc_norm_stderr,none": 0.0036225013703318895,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 76.2370547740446,
12
+ "eqbench_stderr,none": 1.7148952450726893,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=FallenMerick/Chewy-Lemon-Cookie-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "0f5d0d6d218b3ef034f58eba32d6fe7ac4c237ae",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719858887.6024628,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "FallenMerick/Chewy-Lemon-Cookie-11B",
168
+ "model_name_sanitized": "FallenMerick__Chewy-Lemon-Cookie-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 70182.562797015,
175
+ "end_time": 72435.044500542,
176
+ "total_evaluation_time_seconds": "2252.48170352701"
177
+ }
FallenMerick__Chunky-Lemon-Cookie-11B/.ipynb_checkpoints/results_2024-07-01T18-34-32.911166-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6622186815375424,
5
+ "acc_stderr,none": 0.004719870074967253,
6
+ "acc_norm,none": 0.8435570603465445,
7
+ "acc_norm_stderr,none": 0.0036253232211662535,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 76.2907953282312,
12
+ "eqbench_stderr,none": 1.7296444904041766,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=FallenMerick/Chunky-Lemon-Cookie-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "849afd37a9995d7a88503e4ef4847c5d9d239e2a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 8
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719856428.7962418,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "FallenMerick/Chunky-Lemon-Cookie-11B",
168
+ "model_name_sanitized": "FallenMerick__Chunky-Lemon-Cookie-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 67723.856639362,
175
+ "end_time": 70174.840569089,
176
+ "total_evaluation_time_seconds": "2450.983929727008"
177
+ }
FallenMerick__Chunky-Lemon-Cookie-11B/results_2024-07-01T18-34-32.911166.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6622186815375424,
5
+ "acc_stderr,none": 0.004719870074967253,
6
+ "acc_norm,none": 0.8435570603465445,
7
+ "acc_norm_stderr,none": 0.0036253232211662535,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 76.2907953282312,
12
+ "eqbench_stderr,none": 1.7296444904041766,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=FallenMerick/Chunky-Lemon-Cookie-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "849afd37a9995d7a88503e4ef4847c5d9d239e2a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 8
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719856428.7962418,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "FallenMerick/Chunky-Lemon-Cookie-11B",
168
+ "model_name_sanitized": "FallenMerick__Chunky-Lemon-Cookie-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 67723.856639362,
175
+ "end_time": 70174.840569089,
176
+ "total_evaluation_time_seconds": "2450.983929727008"
177
+ }
FallenMerick__Iced-Lemon-Cookie-7B/.ipynb_checkpoints/results_2024-06-29T01-06-21.272851-checkpoint.json ADDED
The diff for this file is too large to render. See raw diff
 
FallenMerick__Iced-Lemon-Cookie-7B/results_2024-06-29T01-06-21.272851.json ADDED
The diff for this file is too large to render. See raw diff
 
FallenMerick__Smart-Lemon-Cookie-7B/.ipynb_checkpoints/results_2024-06-28T14-56-07.716918-checkpoint.json ADDED
The diff for this file is too large to render. See raw diff
 
FallenMerick__Smart-Lemon-Cookie-7B/results_2024-06-28T14-56-07.716918.json ADDED
The diff for this file is too large to render. See raw diff
 
Himitsui__KuroMitsu-11B/.ipynb_checkpoints/results_2024-07-01T22-05-02.101817-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6841266679944235,
5
+ "acc_stderr,none": 0.004639126951051454,
6
+ "acc_norm,none": 0.8632742481577375,
7
+ "acc_norm_stderr,none": 0.0034285545959502227,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 70.49864838913086,
12
+ "eqbench_stderr,none": 2.176357434703893,
13
+ "percent_parseable,none": 98.83040935672514,
14
+ "percent_parseable_stderr,none": 0.824589459544595,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Himitsui/KuroMitsu-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "7bd8487fc3a5c3bac022bfe8c34d2f630c123d40",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719869292.2336426,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Himitsui/KuroMitsu-11B",
168
+ "model_name_sanitized": "Himitsui__KuroMitsu-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 80587.309586819,
175
+ "end_time": 82804.031242981,
176
+ "total_evaluation_time_seconds": "2216.7216561620007"
177
+ }
Himitsui__KuroMitsu-11B/results_2024-07-01T22-05-02.101817.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6841266679944235,
5
+ "acc_stderr,none": 0.004639126951051454,
6
+ "acc_norm,none": 0.8632742481577375,
7
+ "acc_norm_stderr,none": 0.0034285545959502227,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 70.49864838913086,
12
+ "eqbench_stderr,none": 2.176357434703893,
13
+ "percent_parseable,none": 98.83040935672514,
14
+ "percent_parseable_stderr,none": 0.824589459544595,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Himitsui/KuroMitsu-11B,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "7bd8487fc3a5c3bac022bfe8c34d2f630c123d40",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719869292.2336426,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Himitsui/KuroMitsu-11B",
168
+ "model_name_sanitized": "Himitsui__KuroMitsu-11B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 80587.309586819,
175
+ "end_time": 82804.031242981,
176
+ "total_evaluation_time_seconds": "2216.7216561620007"
177
+ }
HuggingFaceH4__zephyr-7b-beta/.ipynb_checkpoints/results_2024-07-02T05-33-39.653334-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6398127862975503,
5
+ "acc_stderr,none": 0.0047907346837046125,
6
+ "acc_norm,none": 0.8201553475403306,
7
+ "acc_norm_stderr,none": 0.0038327310175919993,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 58.1357621766725,
12
+ "eqbench_stderr,none": 2.8035833778342916,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=HuggingFaceH4/zephyr-7b-beta,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b70e0c9a2d9e14bd1e812d3c398e5f313e93b473",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719896897.7463036,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "HuggingFaceH4/zephyr-7b-beta",
168
+ "model_name_sanitized": "HuggingFaceH4__zephyr-7b-beta",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 108192.842263836,
175
+ "end_time": 109721.582768754,
176
+ "total_evaluation_time_seconds": "1528.7405049179943"
177
+ }
HuggingFaceH4__zephyr-7b-beta/results_2024-07-02T05-33-39.653334.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6398127862975503,
5
+ "acc_stderr,none": 0.0047907346837046125,
6
+ "acc_norm,none": 0.8201553475403306,
7
+ "acc_norm_stderr,none": 0.0038327310175919993,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 58.1357621766725,
12
+ "eqbench_stderr,none": 2.8035833778342916,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=HuggingFaceH4/zephyr-7b-beta,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b70e0c9a2d9e14bd1e812d3c398e5f313e93b473",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719896897.7463036,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "HuggingFaceH4/zephyr-7b-beta",
168
+ "model_name_sanitized": "HuggingFaceH4__zephyr-7b-beta",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 108192.842263836,
175
+ "end_time": 109721.582768754,
176
+ "total_evaluation_time_seconds": "1528.7405049179943"
177
+ }
Intel__neural-chat-7b-v3-1/.ipynb_checkpoints/results_2024-06-27T21-55-55.507233-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6323441545508863,
5
+ "acc_stderr,none": 0.004811815959388812,
6
+ "acc_norm,none": 0.7975502887870942,
7
+ "acc_norm_stderr,none": 0.004010043978333027,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 62.2626522660805,
12
+ "eqbench_stderr,none": 2.2134366454600554,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Intel/neural-chat-7b-v3-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "c0d379a49c1c0579529d5e6f2e936ddb759552a8",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719523797.1185606,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Intel/neural-chat-7b-v3-1",
168
+ "model_name_sanitized": "Intel__neural-chat-7b-v3-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 76180.270750278,
175
+ "end_time": 77745.57190531,
176
+ "total_evaluation_time_seconds": "1565.301155032008"
177
+ }
Intel__neural-chat-7b-v3-1/results_2024-06-27T21-55-55.507233.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6323441545508863,
5
+ "acc_stderr,none": 0.004811815959388812,
6
+ "acc_norm,none": 0.7975502887870942,
7
+ "acc_norm_stderr,none": 0.004010043978333027,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 62.2626522660805,
12
+ "eqbench_stderr,none": 2.2134366454600554,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Intel/neural-chat-7b-v3-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "c0d379a49c1c0579529d5e6f2e936ddb759552a8",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719523797.1185606,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Intel/neural-chat-7b-v3-1",
168
+ "model_name_sanitized": "Intel__neural-chat-7b-v3-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 76180.270750278,
175
+ "end_time": 77745.57190531,
176
+ "total_evaluation_time_seconds": "1565.301155032008"
177
+ }
KatyTheCutie__LemonadeRP-4.5.3/.ipynb_checkpoints/results_2024-07-02T08-08-46.956689-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6444931288587931,
5
+ "acc_stderr,none": 0.004776883632722606,
6
+ "acc_norm,none": 0.8265285799641505,
7
+ "acc_norm_stderr,none": 0.0037788044746058284,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.22759969511479,
12
+ "eqbench_stderr,none": 2.4086520534332245,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KatyTheCutie/LemonadeRP-4.5.3,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "3f2309618a48035253889f01d4df2d7f1e81b730",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719906146.1677766,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KatyTheCutie/LemonadeRP-4.5.3",
168
+ "model_name_sanitized": "KatyTheCutie__LemonadeRP-4.5.3",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 117441.278859038,
175
+ "end_time": 119028.886089565,
176
+ "total_evaluation_time_seconds": "1587.6072305270063"
177
+ }
KatyTheCutie__LemonadeRP-4.5.3/results_2024-07-02T08-08-46.956689.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6444931288587931,
5
+ "acc_stderr,none": 0.004776883632722606,
6
+ "acc_norm,none": 0.8265285799641505,
7
+ "acc_norm_stderr,none": 0.0037788044746058284,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.22759969511479,
12
+ "eqbench_stderr,none": 2.4086520534332245,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KatyTheCutie/LemonadeRP-4.5.3,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "3f2309618a48035253889f01d4df2d7f1e81b730",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719906146.1677766,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KatyTheCutie/LemonadeRP-4.5.3",
168
+ "model_name_sanitized": "KatyTheCutie__LemonadeRP-4.5.3",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 117441.278859038,
175
+ "end_time": 119028.886089565,
176
+ "total_evaluation_time_seconds": "1587.6072305270063"
177
+ }
KoboldAI__Mistral-7B-Erebus-v3/.ipynb_checkpoints/results_2024-06-28T02-01-18.290687-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5837482573192591,
5
+ "acc_stderr,none": 0.0049192891130275095,
6
+ "acc_norm,none": 0.7665803624775941,
7
+ "acc_norm_stderr,none": 0.004221424792919153,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 18.19761609584577,
12
+ "eqbench_stderr,none": 3.474273216617232,
13
+ "percent_parseable,none": 97.6608187134503,
14
+ "percent_parseable_stderr,none": 1.1592247905734945,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Erebus-v3,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "476c2eed031028f2fcfb9b8d0115b83363cec904",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719538494.5098195,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Erebus-v3",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Erebus-v3",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 90877.776869387,
175
+ "end_time": 92468.355496828,
176
+ "total_evaluation_time_seconds": "1590.578627440991"
177
+ }
KoboldAI__Mistral-7B-Erebus-v3/results_2024-06-28T02-01-18.290687.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5837482573192591,
5
+ "acc_stderr,none": 0.0049192891130275095,
6
+ "acc_norm,none": 0.7665803624775941,
7
+ "acc_norm_stderr,none": 0.004221424792919153,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 18.19761609584577,
12
+ "eqbench_stderr,none": 3.474273216617232,
13
+ "percent_parseable,none": 97.6608187134503,
14
+ "percent_parseable_stderr,none": 1.1592247905734945,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Erebus-v3,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "476c2eed031028f2fcfb9b8d0115b83363cec904",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719538494.5098195,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Erebus-v3",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Erebus-v3",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 90877.776869387,
175
+ "end_time": 92468.355496828,
176
+ "total_evaluation_time_seconds": "1590.578627440991"
177
+ }
KoboldAI__Mistral-7B-Holodeck-1/.ipynb_checkpoints/results_2024-06-28T01-04-59.368025-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6026687910774746,
5
+ "acc_stderr,none": 0.004883455188908956,
6
+ "acc_norm,none": 0.7918741286596296,
7
+ "acc_norm_stderr,none": 0.0040513767194979506,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 2.099910527905425,
12
+ "eqbench_stderr,none": 2.491702523648299,
13
+ "percent_parseable,none": 98.24561403508773,
14
+ "percent_parseable_stderr,none": 1.0069193740062292,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Holodeck-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "76057cc5c1923921162133c81ae7ca0e92755810",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719535119.7065547,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Holodeck-1",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Holodeck-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 87502.926965946,
175
+ "end_time": 89089.432844292,
176
+ "total_evaluation_time_seconds": "1586.5058783459972"
177
+ }
KoboldAI__Mistral-7B-Holodeck-1/results_2024-06-28T01-04-59.368025.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6026687910774746,
5
+ "acc_stderr,none": 0.004883455188908956,
6
+ "acc_norm,none": 0.7918741286596296,
7
+ "acc_norm_stderr,none": 0.0040513767194979506,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 2.099910527905425,
12
+ "eqbench_stderr,none": 2.491702523648299,
13
+ "percent_parseable,none": 98.24561403508773,
14
+ "percent_parseable_stderr,none": 1.0069193740062292,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Holodeck-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "76057cc5c1923921162133c81ae7ca0e92755810",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719535119.7065547,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Holodeck-1",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Holodeck-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 87502.926965946,
175
+ "end_time": 89089.432844292,
176
+ "total_evaluation_time_seconds": "1586.5058783459972"
177
+ }
NeverSleep__Mistral-11B-SynthIAirOmniMix/.ipynb_checkpoints/results_2024-07-01T23-28-29.609057-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6276638119896435,
5
+ "acc_stderr,none": 0.00482439307682663,
6
+ "acc_norm,none": 0.8157737502489544,
7
+ "acc_norm_stderr,none": 0.0038687630867377757,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 55.19425772388985,
12
+ "eqbench_stderr,none": 2.8835673004687723,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NeverSleep/Mistral-11B-SynthIAirOmniMix,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "639cca3fff101891a70eb2f12fc835598ed50eb0",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 8
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719874190.80644,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NeverSleep/Mistral-11B-SynthIAirOmniMix",
168
+ "model_name_sanitized": "NeverSleep__Mistral-11B-SynthIAirOmniMix",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 85485.875698911,
175
+ "end_time": 87811.538471,
176
+ "total_evaluation_time_seconds": "2325.66277208901"
177
+ }
NeverSleep__Mistral-11B-SynthIAirOmniMix/results_2024-07-01T23-28-29.609057.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6276638119896435,
5
+ "acc_stderr,none": 0.00482439307682663,
6
+ "acc_norm,none": 0.8157737502489544,
7
+ "acc_norm_stderr,none": 0.0038687630867377757,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 55.19425772388985,
12
+ "eqbench_stderr,none": 2.8835673004687723,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NeverSleep/Mistral-11B-SynthIAirOmniMix,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "639cca3fff101891a70eb2f12fc835598ed50eb0",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 8
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719874190.80644,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NeverSleep/Mistral-11B-SynthIAirOmniMix",
168
+ "model_name_sanitized": "NeverSleep__Mistral-11B-SynthIAirOmniMix",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 85485.875698911,
175
+ "end_time": 87811.538471,
176
+ "total_evaluation_time_seconds": "2325.66277208901"
177
+ }
Norquinal__Mistral-7B-claude-chat/.ipynb_checkpoints/results_2024-07-02T07-25-06.524375-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6319458275243975,
5
+ "acc_stderr,none": 0.004812905279066437,
6
+ "acc_norm,none": 0.8306114319856602,
7
+ "acc_norm_stderr,none": 0.003743281749373698,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 16.33570389924275,
12
+ "eqbench_stderr,none": 2.9383702981155455,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374279,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Norquinal/Mistral-7B-claude-chat,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "781aa96659a06a1c70fb1f27f68c7db3f5ab760e",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719903556.2722895,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Norquinal/Mistral-7B-claude-chat",
168
+ "model_name_sanitized": "Norquinal__Mistral-7B-claude-chat",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 114851.308841458,
175
+ "end_time": 116408.453788708,
176
+ "total_evaluation_time_seconds": "1557.1449472499953"
177
+ }
Norquinal__Mistral-7B-claude-chat/results_2024-07-02T07-25-06.524375.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6319458275243975,
5
+ "acc_stderr,none": 0.004812905279066437,
6
+ "acc_norm,none": 0.8306114319856602,
7
+ "acc_norm_stderr,none": 0.003743281749373698,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 16.33570389924275,
12
+ "eqbench_stderr,none": 2.9383702981155455,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374279,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Norquinal/Mistral-7B-claude-chat,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "781aa96659a06a1c70fb1f27f68c7db3f5ab760e",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719903556.2722895,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Norquinal/Mistral-7B-claude-chat",
168
+ "model_name_sanitized": "Norquinal__Mistral-7B-claude-chat",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 114851.308841458,
175
+ "end_time": 116408.453788708,
176
+ "total_evaluation_time_seconds": "1557.1449472499953"
177
+ }
NousResearch__Hermes-2-Pro-Mistral-7B/.ipynb_checkpoints/results_2024-06-28T00-36-44.931474-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6267675761800439,
5
+ "acc_stderr,none": 0.004826746160830164,
6
+ "acc_norm,none": 0.8055168293168692,
7
+ "acc_norm_stderr,none": 0.003949933997955457,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.92538496559615,
12
+ "eqbench_stderr,none": 2.278499695256187,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Hermes-2-Pro-Mistral-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241994240,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "09317b1d8da639b5d9af77c06aa17cde0f0f91c0",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719533491.7175071,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Hermes-2-Pro-Mistral-7B",
168
+ "model_name_sanitized": "NousResearch__Hermes-2-Pro-Mistral-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 85874.893829605,
175
+ "end_time": 87394.996271898,
176
+ "total_evaluation_time_seconds": "1520.1024422929913"
177
+ }
NousResearch__Hermes-2-Pro-Mistral-7B/results_2024-06-28T00-36-44.931474.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6267675761800439,
5
+ "acc_stderr,none": 0.004826746160830164,
6
+ "acc_norm,none": 0.8055168293168692,
7
+ "acc_norm_stderr,none": 0.003949933997955457,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.92538496559615,
12
+ "eqbench_stderr,none": 2.278499695256187,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Hermes-2-Pro-Mistral-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241994240,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "09317b1d8da639b5d9af77c06aa17cde0f0f91c0",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719533491.7175071,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Hermes-2-Pro-Mistral-7B",
168
+ "model_name_sanitized": "NousResearch__Hermes-2-Pro-Mistral-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 85874.893829605,
175
+ "end_time": 87394.996271898,
176
+ "total_evaluation_time_seconds": "1520.1024422929913"
177
+ }
NousResearch__Nous-Capybara-7B-V1.9/.ipynb_checkpoints/results_2024-07-02T07-40-59.772360-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6075482971519618,
5
+ "acc_stderr,none": 0.004872984492967986,
6
+ "acc_norm,none": 0.7870942043417646,
7
+ "acc_norm_stderr,none": 0.004085249783499773,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 19.249537416299493,
12
+ "eqbench_stderr,none": 3.5871216396534114,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Nous-Capybara-7B-V1.9,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "ea08e10fb568f676e19e810d11d4a5ee6b3f02b3",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719904544.6768596,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Nous-Capybara-7B-V1.9",
168
+ "model_name_sanitized": "NousResearch__Nous-Capybara-7B-V1.9",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 115839.811088593,
175
+ "end_time": 117361.70177151,
176
+ "total_evaluation_time_seconds": "1521.890682917001"
177
+ }
NousResearch__Nous-Capybara-7B-V1.9/results_2024-07-02T07-40-59.772360.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6075482971519618,
5
+ "acc_stderr,none": 0.004872984492967986,
6
+ "acc_norm,none": 0.7870942043417646,
7
+ "acc_norm_stderr,none": 0.004085249783499773,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 19.249537416299493,
12
+ "eqbench_stderr,none": 3.5871216396534114,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Nous-Capybara-7B-V1.9,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "ea08e10fb568f676e19e810d11d4a5ee6b3f02b3",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719904544.6768596,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Nous-Capybara-7B-V1.9",
168
+ "model_name_sanitized": "NousResearch__Nous-Capybara-7B-V1.9",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 115839.811088593,
175
+ "end_time": 117361.70177151,
176
+ "total_evaluation_time_seconds": "1521.890682917001"
177
+ }
NousResearch__Nous-Hermes-2-SOLAR-10.7B/.ipynb_checkpoints/results_2024-07-01T22-46-11.267534-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6467835092611034,
5
+ "acc_stderr,none": 0.004769924131304646,
6
+ "acc_norm,none": 0.8324039036048596,
7
+ "acc_norm_stderr,none": 0.0037274387865133193,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.524669890379585,
12
+ "eqbench_stderr,none": 2.5941253832883335,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Nous-Hermes-2-SOLAR-10.7B,trust_remote_code=True",
128
+ "model_num_parameters": 10731540480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "14c1fbe2f71acdcd58247b30d5439bd572d52386",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719871760.8771381,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Nous-Hermes-2-SOLAR-10.7B",
168
+ "model_name_sanitized": "NousResearch__Nous-Hermes-2-SOLAR-10.7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 83055.962424888,
175
+ "end_time": 85273.196902306,
176
+ "total_evaluation_time_seconds": "2217.2344774179946"
177
+ }
NousResearch__Nous-Hermes-2-SOLAR-10.7B/results_2024-07-01T22-46-11.267534.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6467835092611034,
5
+ "acc_stderr,none": 0.004769924131304646,
6
+ "acc_norm,none": 0.8324039036048596,
7
+ "acc_norm_stderr,none": 0.0037274387865133193,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.524669890379585,
12
+ "eqbench_stderr,none": 2.5941253832883335,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Nous-Hermes-2-SOLAR-10.7B,trust_remote_code=True",
128
+ "model_num_parameters": 10731540480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "14c1fbe2f71acdcd58247b30d5439bd572d52386",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719871760.8771381,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Nous-Hermes-2-SOLAR-10.7B",
168
+ "model_name_sanitized": "NousResearch__Nous-Hermes-2-SOLAR-10.7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 83055.962424888,
175
+ "end_time": 85273.196902306,
176
+ "total_evaluation_time_seconds": "2217.2344774179946"
177
+ }
Open-Orca__Mistral-7B-OpenOrca/.ipynb_checkpoints/results_2024-06-27T21-00-54.306241-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6379207329217288,
5
+ "acc_stderr,none": 0.004796193584930065,
6
+ "acc_norm,none": 0.8166699860585541,
7
+ "acc_norm_stderr,none": 0.0038614605262315377,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.978950638437865,
12
+ "eqbench_stderr,none": 2.3824356593314344,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374284,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Open-Orca/Mistral-7B-OpenOrca,trust_remote_code=True",
128
+ "model_num_parameters": 7241748480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "4a37328cef00f524d3791b1c0cc559a3cc6af14d",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719520557.5287726,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Open-Orca/Mistral-7B-OpenOrca",
168
+ "model_name_sanitized": "Open-Orca__Mistral-7B-OpenOrca",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 72940.705278236,
175
+ "end_time": 74444.371073833,
176
+ "total_evaluation_time_seconds": "1503.6657955970004"
177
+ }
Open-Orca__Mistral-7B-OpenOrca/results_2024-06-27T21-00-54.306241.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6379207329217288,
5
+ "acc_stderr,none": 0.004796193584930065,
6
+ "acc_norm,none": 0.8166699860585541,
7
+ "acc_norm_stderr,none": 0.0038614605262315377,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.978950638437865,
12
+ "eqbench_stderr,none": 2.3824356593314344,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374284,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Open-Orca/Mistral-7B-OpenOrca,trust_remote_code=True",
128
+ "model_num_parameters": 7241748480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "4a37328cef00f524d3791b1c0cc559a3cc6af14d",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719520557.5287726,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Open-Orca/Mistral-7B-OpenOrca",
168
+ "model_name_sanitized": "Open-Orca__Mistral-7B-OpenOrca",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 72940.705278236,
175
+ "end_time": 74444.371073833,
176
+ "total_evaluation_time_seconds": "1503.6657955970004"
177
+ }
SanjiWatsuki__Kunoichi-7B/.ipynb_checkpoints/results_2024-06-27T20-34-47.197919-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6803425612427804,
5
+ "acc_stderr,none": 0.004653907471785688,
6
+ "acc_norm,none": 0.8525194184425413,
7
+ "acc_norm_stderr,none": 0.003538596773704852,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 72.35673723130577,
12
+ "eqbench_stderr,none": 1.842888264461036,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Kunoichi-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2c23b9d0036e6e74e5f61de74776e9091956c83",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719519064.691441,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Kunoichi-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Kunoichi-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 71447.838088771,
175
+ "end_time": 72877.26274353,
176
+ "total_evaluation_time_seconds": "1429.424654759001"
177
+ }
SanjiWatsuki__Kunoichi-7B/results_2024-06-27T20-34-47.197919.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6803425612427804,
5
+ "acc_stderr,none": 0.004653907471785688,
6
+ "acc_norm,none": 0.8525194184425413,
7
+ "acc_norm_stderr,none": 0.003538596773704852,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 72.35673723130577,
12
+ "eqbench_stderr,none": 1.842888264461036,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Kunoichi-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2c23b9d0036e6e74e5f61de74776e9091956c83",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719519064.691441,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Kunoichi-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Kunoichi-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 71447.838088771,
175
+ "end_time": 72877.26274353,
176
+ "total_evaluation_time_seconds": "1429.424654759001"
177
+ }
SanjiWatsuki__Loyal-Macaroni-Maid-7B/.ipynb_checkpoints/results_2024-07-02T06-14-04.529485-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6699860585540729,
5
+ "acc_stderr,none": 0.004692567655961757,
6
+ "acc_norm,none": 0.8453495319657439,
7
+ "acc_norm_stderr,none": 0.0036083220651419597,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 73.66931196891234,
12
+ "eqbench_stderr,none": 1.6676417973789068,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Loyal-Macaroni-Maid-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "831837e474f6c474f68f3c31a62ef7eb01b9f5b7",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719899408.9462144,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Loyal-Macaroni-Maid-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Loyal-Macaroni-Maid-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 110704.019752883,
175
+ "end_time": 112146.458918638,
176
+ "total_evaluation_time_seconds": "1442.4391657550004"
177
+ }
SanjiWatsuki__Loyal-Macaroni-Maid-7B/results_2024-07-02T06-14-04.529485.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6699860585540729,
5
+ "acc_stderr,none": 0.004692567655961757,
6
+ "acc_norm,none": 0.8453495319657439,
7
+ "acc_norm_stderr,none": 0.0036083220651419597,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 73.66931196891234,
12
+ "eqbench_stderr,none": 1.6676417973789068,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Loyal-Macaroni-Maid-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "831837e474f6c474f68f3c31a62ef7eb01b9f5b7",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:1",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719899408.9462144,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Loyal-Macaroni-Maid-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Loyal-Macaroni-Maid-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 110704.019752883,
175
+ "end_time": 112146.458918638,
176
+ "total_evaluation_time_seconds": "1442.4391657550004"
177
+ }
SanjiWatsuki__Silicon-Maid-7B/.ipynb_checkpoints/results_2024-07-02T06-55-56.426785-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6676956781517626,
5
+ "acc_stderr,none": 0.0047007677417355885,
6
+ "acc_norm,none": 0.8455486954789883,
7
+ "acc_norm_stderr,none": 0.0036064226236399086,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 68.74376746724828,
12
+ "eqbench_stderr,none": 1.9296099363146424,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Silicon-Maid-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "4e43d81f3fff1091df7cb2d85e9e306d25235701",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719901923.6482406,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Silicon-Maid-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Silicon-Maid-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 113218.750420381,
175
+ "end_time": 114658.35620432,
176
+ "total_evaluation_time_seconds": "1439.6057839390123"
177
+ }
SanjiWatsuki__Silicon-Maid-7B/results_2024-07-02T06-55-56.426785.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6676956781517626,
5
+ "acc_stderr,none": 0.0047007677417355885,
6
+ "acc_norm,none": 0.8455486954789883,
7
+ "acc_norm_stderr,none": 0.0036064226236399086,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 68.74376746724828,
12
+ "eqbench_stderr,none": 1.9296099363146424,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Silicon-Maid-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "4e43d81f3fff1091df7cb2d85e9e306d25235701",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719901923.6482406,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Silicon-Maid-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Silicon-Maid-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 113218.750420381,
175
+ "end_time": 114658.35620432,
176
+ "total_evaluation_time_seconds": "1439.6057839390123"
177
+ }
Sao10K__Fimbulvetr-10.7B-v1/.ipynb_checkpoints/results_2024-07-01T21-25-41.128938-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6694881497709619,
5
+ "acc_stderr,none": 0.004694360968929443,
6
+ "acc_norm,none": 0.8580959968133838,
7
+ "acc_norm_stderr,none": 0.0034823849566329064,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.41948210475555,
12
+ "eqbench_stderr,none": 2.4500037057733617,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Sao10K/Fimbulvetr-10.7B-v1,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "30d93aaba30d8b9eba0ce46fb68a468ea242174a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719866827.6673388,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Sao10K/Fimbulvetr-10.7B-v1",
168
+ "model_name_sanitized": "Sao10K__Fimbulvetr-10.7B-v1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 78122.684526781,
175
+ "end_time": 80443.05835636,
176
+ "total_evaluation_time_seconds": "2320.3738295789954"
177
+ }
Sao10K__Fimbulvetr-10.7B-v1/results_2024-07-01T21-25-41.128938.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6694881497709619,
5
+ "acc_stderr,none": 0.004694360968929443,
6
+ "acc_norm,none": 0.8580959968133838,
7
+ "acc_norm_stderr,none": 0.0034823849566329064,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.41948210475555,
12
+ "eqbench_stderr,none": 2.4500037057733617,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Sao10K/Fimbulvetr-10.7B-v1,trust_remote_code=True",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "30d93aaba30d8b9eba0ce46fb68a468ea242174a",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719866827.6673388,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Sao10K/Fimbulvetr-10.7B-v1",
168
+ "model_name_sanitized": "Sao10K__Fimbulvetr-10.7B-v1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 78122.684526781,
175
+ "end_time": 80443.05835636,
176
+ "total_evaluation_time_seconds": "2320.3738295789954"
177
+ }
Sao10K__Fimbulvetr-11B-v2/.ipynb_checkpoints/results_2024-06-28T04-32-22.127106-checkpoint.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.68123879705238,
5
+ "acc_stderr,none": 0.004650438781745276,
6
+ "acc_norm,none": 0.8660625373431587,
7
+ "acc_norm_stderr,none": 0.003398890525229556,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 70.00837363646892,
12
+ "eqbench_stderr,none": 2.230997557081673,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374293,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Sao10K/Fimbulvetr-11B-v2",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2dcd534dc3a53ff84e60a53b87816185169be19",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719546844.0477293,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Sao10K/Fimbulvetr-11B-v2",
168
+ "model_name_sanitized": "Sao10K__Fimbulvetr-11B-v2",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 99227.279509843,
175
+ "end_time": 101532.191916139,
176
+ "total_evaluation_time_seconds": "2304.912406295989"
177
+ }
Sao10K__Fimbulvetr-11B-v2/results_2024-06-28T04-32-22.127106.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.68123879705238,
5
+ "acc_stderr,none": 0.004650438781745276,
6
+ "acc_norm,none": 0.8660625373431587,
7
+ "acc_norm_stderr,none": 0.003398890525229556,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 70.00837363646892,
12
+ "eqbench_stderr,none": 2.230997557081673,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374293,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Sao10K/Fimbulvetr-11B-v2",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2dcd534dc3a53ff84e60a53b87816185169be19",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719546844.0477293,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Sao10K/Fimbulvetr-11B-v2",
168
+ "model_name_sanitized": "Sao10K__Fimbulvetr-11B-v2",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 99227.279509843,
175
+ "end_time": 101532.191916139,
176
+ "total_evaluation_time_seconds": "2304.912406295989"
177
+ }