--- license: mit base_model: badokorach/roberta-base-squad2-agric-181223 tags: - generated_from_keras_callback model-index: - name: badokorach/xlm-roberta-base-finetuned-mlqa-AGRIC results: [] --- # badokorach/xlm-roberta-base-finetuned-mlqa-AGRIC This model is a fine-tuned version of [badokorach/roberta-base-squad2-agric-181223](https://huggingface.co/badokorach/roberta-base-squad2-agric-181223) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Validation Loss: 0.0 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3040, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2978 | 0.0 | 0 | | 0.0258 | 0.0 | 1 | | 0.0116 | 0.0 | 2 | | 0.0072 | 0.0 | 3 | | 0.0083 | 0.0 | 4 | | 0.0061 | 0.0 | 5 | | 0.0045 | 0.0 | 6 | | 0.0019 | 0.0 | 7 | | 0.0074 | 0.0 | 8 | | 0.0008 | 0.0 | 9 | | 0.0007 | 0.0 | 10 | | 0.0002 | 0.0 | 11 | | 0.0004 | 0.0 | 12 | | 0.0002 | 0.0 | 13 | | 0.0002 | 0.0 | 14 | | 0.0002 | 0.0 | 15 | | 0.0002 | 0.0 | 16 | | 0.0001 | 0.0 | 17 | | 0.0002 | 0.0 | 18 | | 0.0002 | 0.0 | 19 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1