File size: 1,755 Bytes
49bb30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de074e5
49bb30c
de074e5
49bb30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e924b
eb292d2
48ad6cc
de074e5
49bb30c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/xlm-roberta-base-finetuned-mlqa
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# badokorach/xlm-roberta-base-finetuned-mlqa

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5409
- Validation Loss: 0.0
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 9540, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.0174     | 0.0             | 0     |
| 1.0319     | 0.0             | 1     |
| 0.8021     | 0.0             | 2     |
| 0.6385     | 0.0             | 3     |
| 0.5409     | 0.0             | 4     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1