--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-xls-r-300m datasets: - common_voice_17_0 metrics: - wer model-index: - name: xls-r-300-cv17-bulgarian-adap-ru results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: bg split: validation args: bg metrics: - type: wer value: 0.3184421100534719 name: Wer --- [Visualize in Weights & Biases](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/2220fmjr) # xls-r-300-cv17-bulgarian-adap-ru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - Wer: 0.3184 - Cer: 0.0766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 3.1611 | 0.6579 | 100 | 3.1566 | 1.0 | 1.0 | | 1.4834 | 1.3158 | 200 | 1.5156 | 0.9683 | 0.3419 | | 0.5874 | 1.9737 | 300 | 0.5361 | 0.6018 | 0.1459 | | 0.312 | 2.6316 | 400 | 0.3991 | 0.4526 | 0.1071 | | 0.2139 | 3.2895 | 500 | 0.3913 | 0.4365 | 0.1053 | | 0.2653 | 3.9474 | 600 | 0.3756 | 0.4114 | 0.0997 | | 0.186 | 4.6053 | 700 | 0.3684 | 0.4057 | 0.0971 | | 0.1569 | 5.2632 | 800 | 0.3831 | 0.4182 | 0.0996 | | 0.1635 | 5.9211 | 900 | 0.3577 | 0.3803 | 0.0914 | | 0.0962 | 6.5789 | 1000 | 0.3461 | 0.3620 | 0.0868 | | 0.2232 | 7.2368 | 1100 | 0.3705 | 0.3596 | 0.0856 | | 0.1456 | 7.8947 | 1200 | 0.3722 | 0.3643 | 0.0880 | | 0.0846 | 8.5526 | 1300 | 0.3657 | 0.3565 | 0.0839 | | 0.0874 | 9.2105 | 1400 | 0.3836 | 0.3418 | 0.0814 | | 0.1059 | 9.8684 | 1500 | 0.3634 | 0.3397 | 0.0808 | | 0.0719 | 10.5263 | 1600 | 0.3741 | 0.3468 | 0.0838 | | 0.0681 | 11.1842 | 1700 | 0.3757 | 0.3396 | 0.0817 | | 0.0701 | 11.8421 | 1800 | 0.3892 | 0.3324 | 0.0804 | | 0.043 | 12.5 | 1900 | 0.3892 | 0.3315 | 0.0797 | | 0.0482 | 13.1579 | 2000 | 0.3905 | 0.3213 | 0.0768 | | 0.0279 | 13.8158 | 2100 | 0.3826 | 0.3185 | 0.0761 | | 0.0609 | 14.4737 | 2200 | 0.3848 | 0.3184 | 0.0766 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1