Badr Abdullah
commited on
Commit
•
a23536a
1
Parent(s):
99f5df9
Model save
Browse files
README.md
CHANGED
@@ -1,199 +1,111 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
###
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_voice_17_0
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: xls-r-300m-hbs-phoneme-unfrozen-batch16
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: common_voice_17_0
|
18 |
+
type: common_voice_17_0
|
19 |
+
config: hsb
|
20 |
+
split: test
|
21 |
+
args: hsb
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.4111996251171509
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/badr-nlp/xlsr-continual-finetuning/runs/7invqf4p)
|
32 |
+
# xls-r-300m-hbs-phoneme-unfrozen-batch16
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.7105
|
37 |
+
- Wer: 0.4112
|
38 |
+
- Cer: 0.0948
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 0.0003
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 8
|
60 |
+
- seed: 42
|
61 |
+
- gradient_accumulation_steps: 2
|
62 |
+
- total_train_batch_size: 32
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- lr_scheduler_warmup_steps: 500
|
66 |
+
- num_epochs: 100
|
67 |
+
- mixed_precision_training: Native AMP
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
72 |
+
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
|
73 |
+
| 3.6184 | 3.2258 | 100 | 3.4215 | 1.0 | 1.0 |
|
74 |
+
| 3.2927 | 6.4516 | 200 | 3.2247 | 1.0 | 1.0 |
|
75 |
+
| 3.2291 | 9.6774 | 300 | 3.2021 | 1.0 | 1.0000 |
|
76 |
+
| 1.4844 | 12.9032 | 400 | 1.3507 | 0.9857 | 0.2837 |
|
77 |
+
| 0.4136 | 16.1290 | 500 | 0.6982 | 0.6567 | 0.1608 |
|
78 |
+
| 0.2346 | 19.3548 | 600 | 0.6496 | 0.5956 | 0.1466 |
|
79 |
+
| 0.1401 | 22.5806 | 700 | 0.6680 | 0.5565 | 0.1314 |
|
80 |
+
| 0.1535 | 25.8065 | 800 | 0.6597 | 0.5026 | 0.1190 |
|
81 |
+
| 0.1165 | 29.0323 | 900 | 0.7085 | 0.5112 | 0.1224 |
|
82 |
+
| 0.076 | 32.2581 | 1000 | 0.7359 | 0.5026 | 0.1195 |
|
83 |
+
| 0.083 | 35.4839 | 1100 | 0.7144 | 0.4991 | 0.1205 |
|
84 |
+
| 0.0985 | 38.7097 | 1200 | 0.6907 | 0.4756 | 0.1120 |
|
85 |
+
| 0.052 | 41.9355 | 1300 | 0.6806 | 0.4700 | 0.1105 |
|
86 |
+
| 0.0347 | 45.1613 | 1400 | 0.7097 | 0.4588 | 0.1091 |
|
87 |
+
| 0.0432 | 48.3871 | 1500 | 0.7086 | 0.4649 | 0.1093 |
|
88 |
+
| 0.0626 | 51.6129 | 1600 | 0.6947 | 0.4393 | 0.1029 |
|
89 |
+
| 0.0474 | 54.8387 | 1700 | 0.6915 | 0.4468 | 0.1058 |
|
90 |
+
| 0.057 | 58.0645 | 1800 | 0.7068 | 0.4358 | 0.1020 |
|
91 |
+
| 0.0373 | 61.2903 | 1900 | 0.7140 | 0.4419 | 0.1037 |
|
92 |
+
| 0.0994 | 64.5161 | 2000 | 0.6966 | 0.4208 | 0.0987 |
|
93 |
+
| 0.0503 | 67.7419 | 2100 | 0.6997 | 0.4306 | 0.0988 |
|
94 |
+
| 0.0418 | 70.9677 | 2200 | 0.7105 | 0.4353 | 0.1006 |
|
95 |
+
| 0.036 | 74.1935 | 2300 | 0.7320 | 0.4356 | 0.1024 |
|
96 |
+
| 0.0171 | 77.4194 | 2400 | 0.7132 | 0.4257 | 0.0994 |
|
97 |
+
| 0.0234 | 80.6452 | 2500 | 0.7059 | 0.4171 | 0.0967 |
|
98 |
+
| 0.0335 | 83.8710 | 2600 | 0.7449 | 0.4140 | 0.0973 |
|
99 |
+
| 0.0288 | 87.0968 | 2700 | 0.7028 | 0.4157 | 0.0964 |
|
100 |
+
| 0.0344 | 90.3226 | 2800 | 0.7181 | 0.4112 | 0.0960 |
|
101 |
+
| 0.0298 | 93.5484 | 2900 | 0.7150 | 0.4105 | 0.0951 |
|
102 |
+
| 0.0532 | 96.7742 | 3000 | 0.7164 | 0.4119 | 0.0950 |
|
103 |
+
| 0.0058 | 100.0 | 3100 | 0.7105 | 0.4112 | 0.0948 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.42.0.dev0
|
109 |
+
- Pytorch 2.3.1+cu121
|
110 |
+
- Datasets 2.19.2
|
111 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|