Update handler.py
Browse filesSwitch from text-generation pipeline to chat interface.
- handler.py +5 -14
handler.py
CHANGED
@@ -9,19 +9,10 @@ dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
# load the model
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
|
14 |
-
# create inference pipeline
|
15 |
-
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# pass inputs with all kwargs in data
|
22 |
-
if parameters is not None:
|
23 |
-
prediction = self.pipeline(inputs, **parameters)
|
24 |
-
else:
|
25 |
-
prediction = self.pipeline(inputs)
|
26 |
-
# postprocess the prediction
|
27 |
-
return prediction
|
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
# load the model
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
13 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
|
|
|
|
|
14 |
|
15 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
16 |
+
# ignoring parameters! Default to configs in generation_config.json.
|
17 |
+
messages = [{"role": "user", "content": data}]
|
18 |
+
return self.model.chat(self.tokenizer, messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|