Upload folder using huggingface_hub
Browse files- .gitattributes +4 -0
- latest +1 -0
- pytorch_model.bin00 +3 -0
- pytorch_model.bin01 +3 -0
- pytorch_model.bin02 +3 -0
- pytorch_model.bin03 +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- trainer_state.json +2493 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model.bin00 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
pytorch_model.bin01 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
pytorch_model.bin02 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
pytorch_model.bin03 filter=lfs diff=lfs merge=lfs -text
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step400
|
pytorch_model.bin00
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84688ba4575f263eb196a9ea53b74575d0f125c11a7debf0ce09b1416756fd4c
|
3 |
+
size 20000000000
|
pytorch_model.bin01
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dcdb12d08ebbda10c423f933c2127c7677d6d4c50a20ef34f9f5950fdea5543
|
3 |
+
size 20000000000
|
pytorch_model.bin02
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee36326dfc1db3d192cc9be38c992c6fedfe256205eef81a5d726d81ec8fa60
|
3 |
+
size 20000000000
|
pytorch_model.bin03
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8226804c339d0a8f3fdbb0930f8acdb18453240b3a6362074bfff7fdf6439f22
|
3 |
+
size 8778066425
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3325e5522dd0e76d77f51b712ce830a70a2c478865eb15a68ffe9a623451e309
|
3 |
+
size 21687
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c4467a2ae97d673892c18c7cac38b25e4f8a49eb6e46b80eab84253fda3acc3
|
3 |
+
size 21687
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3703baeed556d24505246fa48122667c1e210a3e1bb2b9b466b0f66f64fc4f37
|
3 |
+
size 21687
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd5325bc5a3ef2f0a16edfe8622ca2f8e7df14fcc0770b7bae8fbd49c7f36ea8
|
3 |
+
size 21687
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca5fbe88c50d42730361a56567ac258872b50bbd20970599ef9787d6a3d59b15
|
3 |
+
size 21687
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58b05009ec6cb6e915e03c2b655bb218080c7ee85bd7d0d49bd9579df367b67b
|
3 |
+
size 21687
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb508ceb56e538bdafb465e4213db07bdcdf36d2d54b795f92df0cf54e74beb0
|
3 |
+
size 21687
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa375275d7d4f35c68b510c479335930f40f6c6913040807ac747cd7580a1493
|
3 |
+
size 21687
|
trainer_state.json
ADDED
@@ -0,0 +1,2493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.0441503524780273,
|
3 |
+
"best_model_checkpoint": "rm-ckpt-reward-p100-s0/checkpoint-400",
|
4 |
+
"epoch": 0.4020504573323952,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 0.0,
|
14 |
+
"loss": 1.447,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 7.525749891599529e-06,
|
20 |
+
"loss": 1.4166,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.0,
|
25 |
+
"learning_rate": 1.192803136799156e-05,
|
26 |
+
"loss": 1.417,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.0,
|
31 |
+
"learning_rate": 1.5051499783199057e-05,
|
32 |
+
"loss": 1.3947,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.0,
|
37 |
+
"learning_rate": 1.7474250108400467e-05,
|
38 |
+
"loss": 1.3739,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 1.945378125959109e-05,
|
44 |
+
"loss": 1.3352,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 2.1127451000356418e-05,
|
50 |
+
"loss": 1.3181,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 2.2577249674798584e-05,
|
56 |
+
"loss": 1.3712,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.01,
|
61 |
+
"learning_rate": 2.385606273598312e-05,
|
62 |
+
"loss": 1.3858,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.01,
|
67 |
+
"learning_rate": 2.4999999999999998e-05,
|
68 |
+
"loss": 1.4424,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.01,
|
73 |
+
"learning_rate": 2.6034817128955623e-05,
|
74 |
+
"loss": 1.3381,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.01,
|
79 |
+
"learning_rate": 2.6979531151190617e-05,
|
80 |
+
"loss": 1.2937,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.01,
|
85 |
+
"learning_rate": 2.7848583807670913e-05,
|
86 |
+
"loss": 1.3021,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.01,
|
91 |
+
"learning_rate": 2.8653200891955945e-05,
|
92 |
+
"loss": 1.274,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.01,
|
97 |
+
"learning_rate": 2.940228147639203e-05,
|
98 |
+
"loss": 1.2896,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.01,
|
103 |
+
"learning_rate": 3.0102999566398115e-05,
|
104 |
+
"loss": 1.19,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.02,
|
109 |
+
"learning_rate": 3.076122303445685e-05,
|
110 |
+
"loss": 1.1889,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.02,
|
115 |
+
"learning_rate": 3.1381812627582646e-05,
|
116 |
+
"loss": 1.2028,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.02,
|
121 |
+
"learning_rate": 3.1968840023820715e-05,
|
122 |
+
"loss": 1.2259,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.02,
|
127 |
+
"learning_rate": 3.2525749891599525e-05,
|
128 |
+
"loss": 1.1971,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.02,
|
133 |
+
"learning_rate": 3.305548236834798e-05,
|
134 |
+
"loss": 1.1972,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.02,
|
139 |
+
"learning_rate": 3.3560567020555153e-05,
|
140 |
+
"loss": 1.2193,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.02,
|
145 |
+
"learning_rate": 3.404319590043982e-05,
|
146 |
+
"loss": 1.1354,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.02,
|
151 |
+
"learning_rate": 3.450528104279015e-05,
|
152 |
+
"loss": 1.1434,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.02,
|
157 |
+
"learning_rate": 3.4948500216800935e-05,
|
158 |
+
"loss": 1.1237,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.02,
|
163 |
+
"learning_rate": 3.537433369927044e-05,
|
164 |
+
"loss": 1.1227,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.02,
|
169 |
+
"learning_rate": 3.578409410397468e-05,
|
170 |
+
"loss": 1.1554,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.03,
|
175 |
+
"learning_rate": 3.6178950783555475e-05,
|
176 |
+
"loss": 1.131,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.03,
|
181 |
+
"learning_rate": 3.65599499474739e-05,
|
182 |
+
"loss": 1.2016,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.03,
|
187 |
+
"learning_rate": 3.6928031367991554e-05,
|
188 |
+
"loss": 1.0968,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.03,
|
193 |
+
"learning_rate": 3.728404234585681e-05,
|
194 |
+
"loss": 1.0713,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.03,
|
199 |
+
"learning_rate": 3.762874945799765e-05,
|
200 |
+
"loss": 1.1537,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.03,
|
205 |
+
"learning_rate": 3.796284849694718e-05,
|
206 |
+
"loss": 1.0856,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.03,
|
211 |
+
"learning_rate": 3.8286972926056376e-05,
|
212 |
+
"loss": 1.08,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.03,
|
217 |
+
"learning_rate": 3.8601701108756885e-05,
|
218 |
+
"loss": 1.067,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03,
|
223 |
+
"learning_rate": 3.890756251918218e-05,
|
224 |
+
"loss": 1.1298,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.03,
|
229 |
+
"learning_rate": 3.920504310167487e-05,
|
230 |
+
"loss": 1.0986,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.03,
|
235 |
+
"learning_rate": 3.949458991542025e-05,
|
236 |
+
"loss": 1.0649,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.04,
|
241 |
+
"learning_rate": 3.977661517566247e-05,
|
242 |
+
"loss": 1.0582,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.04,
|
247 |
+
"learning_rate": 4.005149978319905e-05,
|
248 |
+
"loss": 1.1037,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.04,
|
253 |
+
"learning_rate": 4.031959641799338e-05,
|
254 |
+
"loss": 1.052,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.04,
|
259 |
+
"learning_rate": 4.058123225994751e-05,
|
260 |
+
"loss": 1.1048,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04,
|
265 |
+
"learning_rate": 4.0836711389489654e-05,
|
266 |
+
"loss": 1.0817,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.04,
|
271 |
+
"learning_rate": 4.108631691215468e-05,
|
272 |
+
"loss": 1.0712,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.04,
|
277 |
+
"learning_rate": 4.133031284438358e-05,
|
278 |
+
"loss": 1.0865,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.04,
|
283 |
+
"learning_rate": 4.156894579203935e-05,
|
284 |
+
"loss": 1.0837,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.04,
|
289 |
+
"learning_rate": 4.180244644839293e-05,
|
290 |
+
"loss": 1.0915,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.04,
|
295 |
+
"learning_rate": 4.203103093438968e-05,
|
296 |
+
"loss": 1.0845,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.04,
|
301 |
+
"learning_rate": 4.2254902000712836e-05,
|
302 |
+
"loss": 1.0425,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05,
|
307 |
+
"learning_rate": 4.247425010840046e-05,
|
308 |
+
"loss": 1.0479,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.05,
|
313 |
+
"eval_val_accuracy": 0.6191666666666666,
|
314 |
+
"eval_val_loss": 1.1118515729904175,
|
315 |
+
"eval_val_runtime": 913.0126,
|
316 |
+
"eval_val_samples_per_second": 1.095,
|
317 |
+
"eval_val_steps_per_second": 0.137,
|
318 |
+
"step": 50
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.05,
|
322 |
+
"learning_rate": 4.2689254402448405e-05,
|
323 |
+
"loss": 1.079,
|
324 |
+
"step": 51
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.05,
|
328 |
+
"learning_rate": 4.290008359086998e-05,
|
329 |
+
"loss": 1.0855,
|
330 |
+
"step": 52
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 0.05,
|
334 |
+
"learning_rate": 4.310689674001973e-05,
|
335 |
+
"loss": 1.084,
|
336 |
+
"step": 53
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.05,
|
340 |
+
"learning_rate": 4.330984399557421e-05,
|
341 |
+
"loss": 1.0787,
|
342 |
+
"step": 54
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.05,
|
346 |
+
"learning_rate": 4.350906723735609e-05,
|
347 |
+
"loss": 1.1333,
|
348 |
+
"step": 55
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.05,
|
352 |
+
"learning_rate": 4.370470067515501e-05,
|
353 |
+
"loss": 1.1016,
|
354 |
+
"step": 56
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.06,
|
358 |
+
"learning_rate": 4.3896871391812285e-05,
|
359 |
+
"loss": 1.0716,
|
360 |
+
"step": 57
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.06,
|
364 |
+
"learning_rate": 4.408569983907343e-05,
|
365 |
+
"loss": 1.0861,
|
366 |
+
"step": 58
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06,
|
370 |
+
"learning_rate": 4.42713002910536e-05,
|
371 |
+
"loss": 1.0583,
|
372 |
+
"step": 59
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 0.06,
|
376 |
+
"learning_rate": 4.445378125959108e-05,
|
377 |
+
"loss": 1.0793,
|
378 |
+
"step": 60
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.06,
|
382 |
+
"learning_rate": 4.463324587526917e-05,
|
383 |
+
"loss": 1.0761,
|
384 |
+
"step": 61
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.06,
|
388 |
+
"learning_rate": 4.4809792237456346e-05,
|
389 |
+
"loss": 1.0995,
|
390 |
+
"step": 62
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.06,
|
394 |
+
"learning_rate": 4.498351373633954e-05,
|
395 |
+
"loss": 1.0915,
|
396 |
+
"step": 63
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.06,
|
400 |
+
"learning_rate": 4.515449934959717e-05,
|
401 |
+
"loss": 1.0415,
|
402 |
+
"step": 64
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.06,
|
406 |
+
"learning_rate": 4.532283391607138e-05,
|
407 |
+
"loss": 1.0429,
|
408 |
+
"step": 65
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.06,
|
412 |
+
"learning_rate": 4.548859838854671e-05,
|
413 |
+
"loss": 1.0886,
|
414 |
+
"step": 66
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.07,
|
418 |
+
"learning_rate": 4.565187006752065e-05,
|
419 |
+
"loss": 1.0332,
|
420 |
+
"step": 67
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 0.07,
|
424 |
+
"learning_rate": 4.581272281765591e-05,
|
425 |
+
"loss": 1.0271,
|
426 |
+
"step": 68
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 0.07,
|
430 |
+
"learning_rate": 4.597122726843138e-05,
|
431 |
+
"loss": 1.0591,
|
432 |
+
"step": 69
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.07,
|
436 |
+
"learning_rate": 4.612745100035642e-05,
|
437 |
+
"loss": 1.023,
|
438 |
+
"step": 70
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.07,
|
442 |
+
"learning_rate": 4.628145871797688e-05,
|
443 |
+
"loss": 1.0665,
|
444 |
+
"step": 71
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.07,
|
448 |
+
"learning_rate": 4.643331241078171e-05,
|
449 |
+
"loss": 1.064,
|
450 |
+
"step": 72
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.07,
|
454 |
+
"learning_rate": 4.658307150301139e-05,
|
455 |
+
"loss": 1.1339,
|
456 |
+
"step": 73
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.07,
|
460 |
+
"learning_rate": 4.67307929932744e-05,
|
461 |
+
"loss": 1.0609,
|
462 |
+
"step": 74
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 0.07,
|
466 |
+
"learning_rate": 4.687653158479249e-05,
|
467 |
+
"loss": 1.1128,
|
468 |
+
"step": 75
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 0.07,
|
472 |
+
"learning_rate": 4.702033980701978e-05,
|
473 |
+
"loss": 1.0733,
|
474 |
+
"step": 76
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.07,
|
478 |
+
"learning_rate": 4.716226812931204e-05,
|
479 |
+
"loss": 1.0761,
|
480 |
+
"step": 77
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.08,
|
484 |
+
"learning_rate": 4.7302365067262006e-05,
|
485 |
+
"loss": 1.0609,
|
486 |
+
"step": 78
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.08,
|
490 |
+
"learning_rate": 4.744067728226103e-05,
|
491 |
+
"loss": 1.0306,
|
492 |
+
"step": 79
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.08,
|
496 |
+
"learning_rate": 4.757724967479858e-05,
|
497 |
+
"loss": 1.0882,
|
498 |
+
"step": 80
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 0.08,
|
502 |
+
"learning_rate": 4.771212547196624e-05,
|
503 |
+
"loss": 1.0556,
|
504 |
+
"step": 81
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.08,
|
508 |
+
"learning_rate": 4.7845346309592914e-05,
|
509 |
+
"loss": 1.0455,
|
510 |
+
"step": 82
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 0.08,
|
514 |
+
"learning_rate": 4.7976952309401844e-05,
|
515 |
+
"loss": 1.0653,
|
516 |
+
"step": 83
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.08,
|
520 |
+
"learning_rate": 4.810698215154703e-05,
|
521 |
+
"loss": 1.0128,
|
522 |
+
"step": 84
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.08,
|
526 |
+
"learning_rate": 4.823547314285732e-05,
|
527 |
+
"loss": 1.0739,
|
528 |
+
"step": 85
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.08,
|
532 |
+
"learning_rate": 4.836246128108918e-05,
|
533 |
+
"loss": 1.161,
|
534 |
+
"step": 86
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.08,
|
538 |
+
"learning_rate": 4.8487981315465456e-05,
|
539 |
+
"loss": 1.0686,
|
540 |
+
"step": 87
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 0.09,
|
544 |
+
"learning_rate": 4.8612066803754214e-05,
|
545 |
+
"loss": 1.0785,
|
546 |
+
"step": 88
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.09,
|
550 |
+
"learning_rate": 4.873475016612281e-05,
|
551 |
+
"loss": 1.0362,
|
552 |
+
"step": 89
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.09,
|
556 |
+
"learning_rate": 4.885606273598312e-05,
|
557 |
+
"loss": 1.0775,
|
558 |
+
"step": 90
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.09,
|
562 |
+
"learning_rate": 4.897603480802733e-05,
|
563 |
+
"loss": 1.0445,
|
564 |
+
"step": 91
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.09,
|
568 |
+
"learning_rate": 4.909469568363888e-05,
|
569 |
+
"loss": 1.0452,
|
570 |
+
"step": 92
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.09,
|
574 |
+
"learning_rate": 4.9212073713848375e-05,
|
575 |
+
"loss": 1.0687,
|
576 |
+
"step": 93
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.09,
|
580 |
+
"learning_rate": 4.932819633999246e-05,
|
581 |
+
"loss": 1.0775,
|
582 |
+
"step": 94
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 0.09,
|
586 |
+
"learning_rate": 4.9443090132221186e-05,
|
587 |
+
"loss": 1.0239,
|
588 |
+
"step": 95
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 0.09,
|
592 |
+
"learning_rate": 4.9556780825989205e-05,
|
593 |
+
"loss": 1.0532,
|
594 |
+
"step": 96
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.09,
|
598 |
+
"learning_rate": 4.9669293356656114e-05,
|
599 |
+
"loss": 1.0628,
|
600 |
+
"step": 97
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.1,
|
604 |
+
"learning_rate": 4.978065189231237e-05,
|
605 |
+
"loss": 1.0562,
|
606 |
+
"step": 98
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.1,
|
610 |
+
"learning_rate": 4.989087986493874e-05,
|
611 |
+
"loss": 1.0404,
|
612 |
+
"step": 99
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.1,
|
616 |
+
"learning_rate": 4.9999999999999996e-05,
|
617 |
+
"loss": 1.0711,
|
618 |
+
"step": 100
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1,
|
622 |
+
"eval_val_accuracy": 0.6268333333333334,
|
623 |
+
"eval_val_loss": 1.0909922122955322,
|
624 |
+
"eval_val_runtime": 906.1076,
|
625 |
+
"eval_val_samples_per_second": 1.104,
|
626 |
+
"eval_val_steps_per_second": 0.138,
|
627 |
+
"step": 100
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.1,
|
631 |
+
"learning_rate": 1e-05,
|
632 |
+
"loss": 1.0378,
|
633 |
+
"step": 101
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1,
|
637 |
+
"learning_rate": 1e-05,
|
638 |
+
"loss": 1.0447,
|
639 |
+
"step": 102
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1,
|
643 |
+
"learning_rate": 1e-05,
|
644 |
+
"loss": 1.0323,
|
645 |
+
"step": 103
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.1,
|
649 |
+
"learning_rate": 1e-05,
|
650 |
+
"loss": 1.0135,
|
651 |
+
"step": 104
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.1,
|
655 |
+
"learning_rate": 1e-05,
|
656 |
+
"loss": 1.0168,
|
657 |
+
"step": 105
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.1,
|
661 |
+
"learning_rate": 1e-05,
|
662 |
+
"loss": 1.0689,
|
663 |
+
"step": 106
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.1,
|
667 |
+
"learning_rate": 1e-05,
|
668 |
+
"loss": 1.0389,
|
669 |
+
"step": 107
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.1,
|
673 |
+
"learning_rate": 1e-05,
|
674 |
+
"loss": 1.0665,
|
675 |
+
"step": 108
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.11,
|
679 |
+
"learning_rate": 1e-05,
|
680 |
+
"loss": 1.0668,
|
681 |
+
"step": 109
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.11,
|
685 |
+
"learning_rate": 1e-05,
|
686 |
+
"loss": 1.0728,
|
687 |
+
"step": 110
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.11,
|
691 |
+
"learning_rate": 1e-05,
|
692 |
+
"loss": 1.0747,
|
693 |
+
"step": 111
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.11,
|
697 |
+
"learning_rate": 1e-05,
|
698 |
+
"loss": 1.0314,
|
699 |
+
"step": 112
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.11,
|
703 |
+
"learning_rate": 1e-05,
|
704 |
+
"loss": 1.1075,
|
705 |
+
"step": 113
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.11,
|
709 |
+
"learning_rate": 1e-05,
|
710 |
+
"loss": 1.0645,
|
711 |
+
"step": 114
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.11,
|
715 |
+
"learning_rate": 1e-05,
|
716 |
+
"loss": 1.0528,
|
717 |
+
"step": 115
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.11,
|
721 |
+
"learning_rate": 1e-05,
|
722 |
+
"loss": 1.0783,
|
723 |
+
"step": 116
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.11,
|
727 |
+
"learning_rate": 1e-05,
|
728 |
+
"loss": 1.0524,
|
729 |
+
"step": 117
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.11,
|
733 |
+
"learning_rate": 1e-05,
|
734 |
+
"loss": 1.0451,
|
735 |
+
"step": 118
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.12,
|
739 |
+
"learning_rate": 1e-05,
|
740 |
+
"loss": 1.0281,
|
741 |
+
"step": 119
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.12,
|
745 |
+
"learning_rate": 1e-05,
|
746 |
+
"loss": 1.0829,
|
747 |
+
"step": 120
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.12,
|
751 |
+
"learning_rate": 1e-05,
|
752 |
+
"loss": 1.0088,
|
753 |
+
"step": 121
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.12,
|
757 |
+
"learning_rate": 1e-05,
|
758 |
+
"loss": 1.0634,
|
759 |
+
"step": 122
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.12,
|
763 |
+
"learning_rate": 1e-05,
|
764 |
+
"loss": 1.0836,
|
765 |
+
"step": 123
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.12,
|
769 |
+
"learning_rate": 1e-05,
|
770 |
+
"loss": 1.08,
|
771 |
+
"step": 124
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.12,
|
775 |
+
"learning_rate": 1e-05,
|
776 |
+
"loss": 1.0523,
|
777 |
+
"step": 125
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.12,
|
781 |
+
"learning_rate": 1e-05,
|
782 |
+
"loss": 1.0564,
|
783 |
+
"step": 126
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.12,
|
787 |
+
"learning_rate": 1e-05,
|
788 |
+
"loss": 1.038,
|
789 |
+
"step": 127
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.12,
|
793 |
+
"learning_rate": 1e-05,
|
794 |
+
"loss": 1.0494,
|
795 |
+
"step": 128
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.13,
|
799 |
+
"learning_rate": 1e-05,
|
800 |
+
"loss": 1.0329,
|
801 |
+
"step": 129
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.13,
|
805 |
+
"learning_rate": 1e-05,
|
806 |
+
"loss": 1.0806,
|
807 |
+
"step": 130
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.13,
|
811 |
+
"learning_rate": 1e-05,
|
812 |
+
"loss": 1.0763,
|
813 |
+
"step": 131
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.13,
|
817 |
+
"learning_rate": 1e-05,
|
818 |
+
"loss": 1.0504,
|
819 |
+
"step": 132
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.13,
|
823 |
+
"learning_rate": 1e-05,
|
824 |
+
"loss": 1.044,
|
825 |
+
"step": 133
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.13,
|
829 |
+
"learning_rate": 1e-05,
|
830 |
+
"loss": 0.9895,
|
831 |
+
"step": 134
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.13,
|
835 |
+
"learning_rate": 1e-05,
|
836 |
+
"loss": 1.0688,
|
837 |
+
"step": 135
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.13,
|
841 |
+
"learning_rate": 1e-05,
|
842 |
+
"loss": 1.0471,
|
843 |
+
"step": 136
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.13,
|
847 |
+
"learning_rate": 1e-05,
|
848 |
+
"loss": 1.0711,
|
849 |
+
"step": 137
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.13,
|
853 |
+
"learning_rate": 1e-05,
|
854 |
+
"loss": 1.0506,
|
855 |
+
"step": 138
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.14,
|
859 |
+
"learning_rate": 1e-05,
|
860 |
+
"loss": 1.0789,
|
861 |
+
"step": 139
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.14,
|
865 |
+
"learning_rate": 1e-05,
|
866 |
+
"loss": 1.0888,
|
867 |
+
"step": 140
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.14,
|
871 |
+
"learning_rate": 1e-05,
|
872 |
+
"loss": 1.0746,
|
873 |
+
"step": 141
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.14,
|
877 |
+
"learning_rate": 1e-05,
|
878 |
+
"loss": 1.1229,
|
879 |
+
"step": 142
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.14,
|
883 |
+
"learning_rate": 1e-05,
|
884 |
+
"loss": 1.0826,
|
885 |
+
"step": 143
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.14,
|
889 |
+
"learning_rate": 1e-05,
|
890 |
+
"loss": 1.0504,
|
891 |
+
"step": 144
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.14,
|
895 |
+
"learning_rate": 1e-05,
|
896 |
+
"loss": 1.0311,
|
897 |
+
"step": 145
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.14,
|
901 |
+
"learning_rate": 1e-05,
|
902 |
+
"loss": 1.0456,
|
903 |
+
"step": 146
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.14,
|
907 |
+
"learning_rate": 1e-05,
|
908 |
+
"loss": 1.0097,
|
909 |
+
"step": 147
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.14,
|
913 |
+
"learning_rate": 1e-05,
|
914 |
+
"loss": 1.0282,
|
915 |
+
"step": 148
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.14,
|
919 |
+
"learning_rate": 1e-05,
|
920 |
+
"loss": 1.0507,
|
921 |
+
"step": 149
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.15,
|
925 |
+
"learning_rate": 1e-05,
|
926 |
+
"loss": 1.054,
|
927 |
+
"step": 150
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.15,
|
931 |
+
"eval_val_accuracy": 0.626,
|
932 |
+
"eval_val_loss": 1.0630038976669312,
|
933 |
+
"eval_val_runtime": 907.7978,
|
934 |
+
"eval_val_samples_per_second": 1.102,
|
935 |
+
"eval_val_steps_per_second": 0.138,
|
936 |
+
"step": 150
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.15,
|
940 |
+
"learning_rate": 1e-05,
|
941 |
+
"loss": 1.0165,
|
942 |
+
"step": 151
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.15,
|
946 |
+
"learning_rate": 1e-05,
|
947 |
+
"loss": 0.9992,
|
948 |
+
"step": 152
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.15,
|
952 |
+
"learning_rate": 1e-05,
|
953 |
+
"loss": 1.045,
|
954 |
+
"step": 153
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.15,
|
958 |
+
"learning_rate": 1e-05,
|
959 |
+
"loss": 1.0378,
|
960 |
+
"step": 154
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 0.15,
|
964 |
+
"learning_rate": 1e-05,
|
965 |
+
"loss": 1.0502,
|
966 |
+
"step": 155
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 0.15,
|
970 |
+
"learning_rate": 1e-05,
|
971 |
+
"loss": 0.9911,
|
972 |
+
"step": 156
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 0.15,
|
976 |
+
"learning_rate": 1e-05,
|
977 |
+
"loss": 1.063,
|
978 |
+
"step": 157
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.15,
|
982 |
+
"learning_rate": 1e-05,
|
983 |
+
"loss": 1.0383,
|
984 |
+
"step": 158
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.15,
|
988 |
+
"learning_rate": 1e-05,
|
989 |
+
"loss": 1.0511,
|
990 |
+
"step": 159
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.16,
|
994 |
+
"learning_rate": 1e-05,
|
995 |
+
"loss": 1.0204,
|
996 |
+
"step": 160
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.16,
|
1000 |
+
"learning_rate": 1e-05,
|
1001 |
+
"loss": 1.084,
|
1002 |
+
"step": 161
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.16,
|
1006 |
+
"learning_rate": 1e-05,
|
1007 |
+
"loss": 1.0873,
|
1008 |
+
"step": 162
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 0.16,
|
1012 |
+
"learning_rate": 1e-05,
|
1013 |
+
"loss": 1.0304,
|
1014 |
+
"step": 163
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 0.16,
|
1018 |
+
"learning_rate": 1e-05,
|
1019 |
+
"loss": 1.0118,
|
1020 |
+
"step": 164
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 0.16,
|
1024 |
+
"learning_rate": 1e-05,
|
1025 |
+
"loss": 1.04,
|
1026 |
+
"step": 165
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.16,
|
1030 |
+
"learning_rate": 1e-05,
|
1031 |
+
"loss": 1.0018,
|
1032 |
+
"step": 166
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.16,
|
1036 |
+
"learning_rate": 1e-05,
|
1037 |
+
"loss": 1.0432,
|
1038 |
+
"step": 167
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.16,
|
1042 |
+
"learning_rate": 1e-05,
|
1043 |
+
"loss": 1.0116,
|
1044 |
+
"step": 168
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.16,
|
1048 |
+
"learning_rate": 1e-05,
|
1049 |
+
"loss": 1.0647,
|
1050 |
+
"step": 169
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.17,
|
1054 |
+
"learning_rate": 1e-05,
|
1055 |
+
"loss": 1.091,
|
1056 |
+
"step": 170
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 0.17,
|
1060 |
+
"learning_rate": 1e-05,
|
1061 |
+
"loss": 1.0167,
|
1062 |
+
"step": 171
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 0.17,
|
1066 |
+
"learning_rate": 1e-05,
|
1067 |
+
"loss": 1.0952,
|
1068 |
+
"step": 172
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.17,
|
1072 |
+
"learning_rate": 1e-05,
|
1073 |
+
"loss": 1.0423,
|
1074 |
+
"step": 173
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.17,
|
1078 |
+
"learning_rate": 1e-05,
|
1079 |
+
"loss": 1.0198,
|
1080 |
+
"step": 174
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.17,
|
1084 |
+
"learning_rate": 1e-05,
|
1085 |
+
"loss": 1.0341,
|
1086 |
+
"step": 175
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"epoch": 0.17,
|
1090 |
+
"learning_rate": 1e-05,
|
1091 |
+
"loss": 1.0657,
|
1092 |
+
"step": 176
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 0.17,
|
1096 |
+
"learning_rate": 1e-05,
|
1097 |
+
"loss": 1.0084,
|
1098 |
+
"step": 177
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.17,
|
1102 |
+
"learning_rate": 1e-05,
|
1103 |
+
"loss": 1.0483,
|
1104 |
+
"step": 178
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.17,
|
1108 |
+
"learning_rate": 1e-05,
|
1109 |
+
"loss": 1.0493,
|
1110 |
+
"step": 179
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.17,
|
1114 |
+
"learning_rate": 1e-05,
|
1115 |
+
"loss": 1.0328,
|
1116 |
+
"step": 180
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.18,
|
1120 |
+
"learning_rate": 1e-05,
|
1121 |
+
"loss": 1.0585,
|
1122 |
+
"step": 181
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.18,
|
1126 |
+
"learning_rate": 1e-05,
|
1127 |
+
"loss": 0.9869,
|
1128 |
+
"step": 182
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.18,
|
1132 |
+
"learning_rate": 1e-05,
|
1133 |
+
"loss": 1.0266,
|
1134 |
+
"step": 183
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 0.18,
|
1138 |
+
"learning_rate": 1e-05,
|
1139 |
+
"loss": 1.0462,
|
1140 |
+
"step": 184
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 0.18,
|
1144 |
+
"learning_rate": 1e-05,
|
1145 |
+
"loss": 1.0306,
|
1146 |
+
"step": 185
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.18,
|
1150 |
+
"learning_rate": 1e-05,
|
1151 |
+
"loss": 1.0459,
|
1152 |
+
"step": 186
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.18,
|
1156 |
+
"learning_rate": 1e-05,
|
1157 |
+
"loss": 1.0004,
|
1158 |
+
"step": 187
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.18,
|
1162 |
+
"learning_rate": 1e-05,
|
1163 |
+
"loss": 1.0417,
|
1164 |
+
"step": 188
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.18,
|
1168 |
+
"learning_rate": 1e-05,
|
1169 |
+
"loss": 1.0712,
|
1170 |
+
"step": 189
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.18,
|
1174 |
+
"learning_rate": 1e-05,
|
1175 |
+
"loss": 1.0228,
|
1176 |
+
"step": 190
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.19,
|
1180 |
+
"learning_rate": 1e-05,
|
1181 |
+
"loss": 0.9888,
|
1182 |
+
"step": 191
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 0.19,
|
1186 |
+
"learning_rate": 1e-05,
|
1187 |
+
"loss": 0.9393,
|
1188 |
+
"step": 192
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.19,
|
1192 |
+
"learning_rate": 1e-05,
|
1193 |
+
"loss": 1.052,
|
1194 |
+
"step": 193
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.19,
|
1198 |
+
"learning_rate": 1e-05,
|
1199 |
+
"loss": 1.0751,
|
1200 |
+
"step": 194
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.19,
|
1204 |
+
"learning_rate": 1e-05,
|
1205 |
+
"loss": 1.0468,
|
1206 |
+
"step": 195
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.19,
|
1210 |
+
"learning_rate": 1e-05,
|
1211 |
+
"loss": 1.0235,
|
1212 |
+
"step": 196
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"epoch": 0.19,
|
1216 |
+
"learning_rate": 1e-05,
|
1217 |
+
"loss": 1.0428,
|
1218 |
+
"step": 197
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.19,
|
1222 |
+
"learning_rate": 1e-05,
|
1223 |
+
"loss": 1.0408,
|
1224 |
+
"step": 198
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.19,
|
1228 |
+
"learning_rate": 1e-05,
|
1229 |
+
"loss": 1.0112,
|
1230 |
+
"step": 199
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.19,
|
1234 |
+
"learning_rate": 1e-05,
|
1235 |
+
"loss": 1.0329,
|
1236 |
+
"step": 200
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.19,
|
1240 |
+
"eval_val_accuracy": 0.6278333333333334,
|
1241 |
+
"eval_val_loss": 1.0557304620742798,
|
1242 |
+
"eval_val_runtime": 906.1331,
|
1243 |
+
"eval_val_samples_per_second": 1.104,
|
1244 |
+
"eval_val_steps_per_second": 0.138,
|
1245 |
+
"step": 200
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.2,
|
1249 |
+
"learning_rate": 1e-05,
|
1250 |
+
"loss": 1.0219,
|
1251 |
+
"step": 201
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.2,
|
1255 |
+
"learning_rate": 1e-05,
|
1256 |
+
"loss": 1.0479,
|
1257 |
+
"step": 202
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.2,
|
1261 |
+
"learning_rate": 1e-05,
|
1262 |
+
"loss": 0.9808,
|
1263 |
+
"step": 203
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.21,
|
1267 |
+
"learning_rate": 1e-05,
|
1268 |
+
"loss": 1.0404,
|
1269 |
+
"step": 204
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.21,
|
1273 |
+
"learning_rate": 1e-05,
|
1274 |
+
"loss": 1.0214,
|
1275 |
+
"step": 205
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.21,
|
1279 |
+
"learning_rate": 1e-05,
|
1280 |
+
"loss": 0.9991,
|
1281 |
+
"step": 206
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.21,
|
1285 |
+
"learning_rate": 1e-05,
|
1286 |
+
"loss": 0.9435,
|
1287 |
+
"step": 207
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.21,
|
1291 |
+
"learning_rate": 1e-05,
|
1292 |
+
"loss": 1.0083,
|
1293 |
+
"step": 208
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.21,
|
1297 |
+
"learning_rate": 1e-05,
|
1298 |
+
"loss": 1.0187,
|
1299 |
+
"step": 209
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.21,
|
1303 |
+
"learning_rate": 1e-05,
|
1304 |
+
"loss": 1.0493,
|
1305 |
+
"step": 210
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.21,
|
1309 |
+
"learning_rate": 1e-05,
|
1310 |
+
"loss": 0.9925,
|
1311 |
+
"step": 211
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.21,
|
1315 |
+
"learning_rate": 1e-05,
|
1316 |
+
"loss": 1.0142,
|
1317 |
+
"step": 212
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.21,
|
1321 |
+
"learning_rate": 1e-05,
|
1322 |
+
"loss": 1.0131,
|
1323 |
+
"step": 213
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.22,
|
1327 |
+
"learning_rate": 1e-05,
|
1328 |
+
"loss": 1.0041,
|
1329 |
+
"step": 214
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.22,
|
1333 |
+
"learning_rate": 1e-05,
|
1334 |
+
"loss": 1.0187,
|
1335 |
+
"step": 215
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.22,
|
1339 |
+
"learning_rate": 1e-05,
|
1340 |
+
"loss": 1.0551,
|
1341 |
+
"step": 216
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.22,
|
1345 |
+
"learning_rate": 1e-05,
|
1346 |
+
"loss": 1.0224,
|
1347 |
+
"step": 217
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.22,
|
1351 |
+
"learning_rate": 1e-05,
|
1352 |
+
"loss": 1.0654,
|
1353 |
+
"step": 218
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.22,
|
1357 |
+
"learning_rate": 1e-05,
|
1358 |
+
"loss": 1.0472,
|
1359 |
+
"step": 219
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.22,
|
1363 |
+
"learning_rate": 1e-05,
|
1364 |
+
"loss": 0.9667,
|
1365 |
+
"step": 220
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.22,
|
1369 |
+
"learning_rate": 1e-05,
|
1370 |
+
"loss": 0.9944,
|
1371 |
+
"step": 221
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.22,
|
1375 |
+
"learning_rate": 1e-05,
|
1376 |
+
"loss": 1.0283,
|
1377 |
+
"step": 222
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.22,
|
1381 |
+
"learning_rate": 1e-05,
|
1382 |
+
"loss": 1.0047,
|
1383 |
+
"step": 223
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.23,
|
1387 |
+
"learning_rate": 1e-05,
|
1388 |
+
"loss": 0.9781,
|
1389 |
+
"step": 224
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.23,
|
1393 |
+
"learning_rate": 1e-05,
|
1394 |
+
"loss": 1.0127,
|
1395 |
+
"step": 225
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.23,
|
1399 |
+
"learning_rate": 1e-05,
|
1400 |
+
"loss": 1.035,
|
1401 |
+
"step": 226
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.23,
|
1405 |
+
"learning_rate": 1e-05,
|
1406 |
+
"loss": 0.9573,
|
1407 |
+
"step": 227
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.23,
|
1411 |
+
"learning_rate": 1e-05,
|
1412 |
+
"loss": 1.0365,
|
1413 |
+
"step": 228
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.23,
|
1417 |
+
"learning_rate": 1e-05,
|
1418 |
+
"loss": 1.0508,
|
1419 |
+
"step": 229
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.23,
|
1423 |
+
"learning_rate": 1e-05,
|
1424 |
+
"loss": 1.0138,
|
1425 |
+
"step": 230
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.23,
|
1429 |
+
"learning_rate": 1e-05,
|
1430 |
+
"loss": 1.0037,
|
1431 |
+
"step": 231
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.23,
|
1435 |
+
"learning_rate": 1e-05,
|
1436 |
+
"loss": 1.013,
|
1437 |
+
"step": 232
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.23,
|
1441 |
+
"learning_rate": 1e-05,
|
1442 |
+
"loss": 1.0025,
|
1443 |
+
"step": 233
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.24,
|
1447 |
+
"learning_rate": 1e-05,
|
1448 |
+
"loss": 1.0309,
|
1449 |
+
"step": 234
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.24,
|
1453 |
+
"learning_rate": 1e-05,
|
1454 |
+
"loss": 0.9718,
|
1455 |
+
"step": 235
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.24,
|
1459 |
+
"learning_rate": 1e-05,
|
1460 |
+
"loss": 0.9968,
|
1461 |
+
"step": 236
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.24,
|
1465 |
+
"learning_rate": 1e-05,
|
1466 |
+
"loss": 1.024,
|
1467 |
+
"step": 237
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.24,
|
1471 |
+
"learning_rate": 1e-05,
|
1472 |
+
"loss": 1.0028,
|
1473 |
+
"step": 238
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.24,
|
1477 |
+
"learning_rate": 1e-05,
|
1478 |
+
"loss": 1.0701,
|
1479 |
+
"step": 239
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.24,
|
1483 |
+
"learning_rate": 1e-05,
|
1484 |
+
"loss": 1.0428,
|
1485 |
+
"step": 240
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.24,
|
1489 |
+
"learning_rate": 1e-05,
|
1490 |
+
"loss": 0.9651,
|
1491 |
+
"step": 241
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.24,
|
1495 |
+
"learning_rate": 1e-05,
|
1496 |
+
"loss": 1.0095,
|
1497 |
+
"step": 242
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.24,
|
1501 |
+
"learning_rate": 1e-05,
|
1502 |
+
"loss": 1.0495,
|
1503 |
+
"step": 243
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.25,
|
1507 |
+
"learning_rate": 1e-05,
|
1508 |
+
"loss": 1.0441,
|
1509 |
+
"step": 244
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.25,
|
1513 |
+
"learning_rate": 1e-05,
|
1514 |
+
"loss": 1.0412,
|
1515 |
+
"step": 245
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.25,
|
1519 |
+
"learning_rate": 1e-05,
|
1520 |
+
"loss": 1.0335,
|
1521 |
+
"step": 246
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.25,
|
1525 |
+
"learning_rate": 1e-05,
|
1526 |
+
"loss": 1.0092,
|
1527 |
+
"step": 247
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.25,
|
1531 |
+
"learning_rate": 1e-05,
|
1532 |
+
"loss": 1.0408,
|
1533 |
+
"step": 248
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.25,
|
1537 |
+
"learning_rate": 1e-05,
|
1538 |
+
"loss": 0.993,
|
1539 |
+
"step": 249
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.25,
|
1543 |
+
"learning_rate": 1e-05,
|
1544 |
+
"loss": 0.9546,
|
1545 |
+
"step": 250
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.25,
|
1549 |
+
"eval_val_accuracy": 0.6341666666666667,
|
1550 |
+
"eval_val_loss": 1.053076148033142,
|
1551 |
+
"eval_val_runtime": 906.4123,
|
1552 |
+
"eval_val_samples_per_second": 1.103,
|
1553 |
+
"eval_val_steps_per_second": 0.138,
|
1554 |
+
"step": 250
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.25,
|
1558 |
+
"learning_rate": 1e-05,
|
1559 |
+
"loss": 1.043,
|
1560 |
+
"step": 251
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.25,
|
1564 |
+
"learning_rate": 1e-05,
|
1565 |
+
"loss": 1.0082,
|
1566 |
+
"step": 252
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.25,
|
1570 |
+
"learning_rate": 1e-05,
|
1571 |
+
"loss": 1.0281,
|
1572 |
+
"step": 253
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 0.26,
|
1576 |
+
"learning_rate": 1e-05,
|
1577 |
+
"loss": 0.9779,
|
1578 |
+
"step": 254
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.26,
|
1582 |
+
"learning_rate": 1e-05,
|
1583 |
+
"loss": 1.0074,
|
1584 |
+
"step": 255
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.26,
|
1588 |
+
"learning_rate": 1e-05,
|
1589 |
+
"loss": 0.9639,
|
1590 |
+
"step": 256
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 0.26,
|
1594 |
+
"learning_rate": 1e-05,
|
1595 |
+
"loss": 1.0121,
|
1596 |
+
"step": 257
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 0.26,
|
1600 |
+
"learning_rate": 1e-05,
|
1601 |
+
"loss": 1.036,
|
1602 |
+
"step": 258
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.26,
|
1606 |
+
"learning_rate": 1e-05,
|
1607 |
+
"loss": 1.0143,
|
1608 |
+
"step": 259
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.26,
|
1612 |
+
"learning_rate": 1e-05,
|
1613 |
+
"loss": 1.0407,
|
1614 |
+
"step": 260
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 0.26,
|
1618 |
+
"learning_rate": 1e-05,
|
1619 |
+
"loss": 1.0202,
|
1620 |
+
"step": 261
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.26,
|
1624 |
+
"learning_rate": 1e-05,
|
1625 |
+
"loss": 1.0099,
|
1626 |
+
"step": 262
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.26,
|
1630 |
+
"learning_rate": 1e-05,
|
1631 |
+
"loss": 1.0226,
|
1632 |
+
"step": 263
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 0.27,
|
1636 |
+
"learning_rate": 1e-05,
|
1637 |
+
"loss": 1.02,
|
1638 |
+
"step": 264
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.27,
|
1642 |
+
"learning_rate": 1e-05,
|
1643 |
+
"loss": 1.0197,
|
1644 |
+
"step": 265
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.27,
|
1648 |
+
"learning_rate": 1e-05,
|
1649 |
+
"loss": 1.0621,
|
1650 |
+
"step": 266
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.27,
|
1654 |
+
"learning_rate": 1e-05,
|
1655 |
+
"loss": 1.0261,
|
1656 |
+
"step": 267
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 0.27,
|
1660 |
+
"learning_rate": 1e-05,
|
1661 |
+
"loss": 1.0392,
|
1662 |
+
"step": 268
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.27,
|
1666 |
+
"learning_rate": 1e-05,
|
1667 |
+
"loss": 0.9644,
|
1668 |
+
"step": 269
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.27,
|
1672 |
+
"learning_rate": 1e-05,
|
1673 |
+
"loss": 0.9943,
|
1674 |
+
"step": 270
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 0.27,
|
1678 |
+
"learning_rate": 1e-05,
|
1679 |
+
"loss": 1.0354,
|
1680 |
+
"step": 271
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 0.27,
|
1684 |
+
"learning_rate": 1e-05,
|
1685 |
+
"loss": 0.9826,
|
1686 |
+
"step": 272
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 0.27,
|
1690 |
+
"learning_rate": 1e-05,
|
1691 |
+
"loss": 0.9934,
|
1692 |
+
"step": 273
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.28,
|
1696 |
+
"learning_rate": 1e-05,
|
1697 |
+
"loss": 1.0222,
|
1698 |
+
"step": 274
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 0.28,
|
1702 |
+
"learning_rate": 1e-05,
|
1703 |
+
"loss": 1.0752,
|
1704 |
+
"step": 275
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.28,
|
1708 |
+
"learning_rate": 1e-05,
|
1709 |
+
"loss": 1.0337,
|
1710 |
+
"step": 276
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.28,
|
1714 |
+
"learning_rate": 1e-05,
|
1715 |
+
"loss": 0.976,
|
1716 |
+
"step": 277
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 0.28,
|
1720 |
+
"learning_rate": 1e-05,
|
1721 |
+
"loss": 1.051,
|
1722 |
+
"step": 278
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 0.28,
|
1726 |
+
"learning_rate": 1e-05,
|
1727 |
+
"loss": 1.0338,
|
1728 |
+
"step": 279
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 0.28,
|
1732 |
+
"learning_rate": 1e-05,
|
1733 |
+
"loss": 1.0026,
|
1734 |
+
"step": 280
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.28,
|
1738 |
+
"learning_rate": 1e-05,
|
1739 |
+
"loss": 1.0118,
|
1740 |
+
"step": 281
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 0.28,
|
1744 |
+
"learning_rate": 1e-05,
|
1745 |
+
"loss": 0.9982,
|
1746 |
+
"step": 282
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.28,
|
1750 |
+
"learning_rate": 1e-05,
|
1751 |
+
"loss": 1.0136,
|
1752 |
+
"step": 283
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.29,
|
1756 |
+
"learning_rate": 1e-05,
|
1757 |
+
"loss": 0.9613,
|
1758 |
+
"step": 284
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 0.29,
|
1762 |
+
"learning_rate": 1e-05,
|
1763 |
+
"loss": 1.0122,
|
1764 |
+
"step": 285
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.29,
|
1768 |
+
"learning_rate": 1e-05,
|
1769 |
+
"loss": 1.049,
|
1770 |
+
"step": 286
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 0.29,
|
1774 |
+
"learning_rate": 1e-05,
|
1775 |
+
"loss": 1.0164,
|
1776 |
+
"step": 287
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"epoch": 0.29,
|
1780 |
+
"learning_rate": 1e-05,
|
1781 |
+
"loss": 1.0052,
|
1782 |
+
"step": 288
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 0.29,
|
1786 |
+
"learning_rate": 1e-05,
|
1787 |
+
"loss": 1.0244,
|
1788 |
+
"step": 289
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.29,
|
1792 |
+
"learning_rate": 1e-05,
|
1793 |
+
"loss": 0.9886,
|
1794 |
+
"step": 290
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.29,
|
1798 |
+
"learning_rate": 1e-05,
|
1799 |
+
"loss": 1.0039,
|
1800 |
+
"step": 291
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 0.29,
|
1804 |
+
"learning_rate": 1e-05,
|
1805 |
+
"loss": 1.0088,
|
1806 |
+
"step": 292
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.29,
|
1810 |
+
"learning_rate": 1e-05,
|
1811 |
+
"loss": 1.0003,
|
1812 |
+
"step": 293
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 0.3,
|
1816 |
+
"learning_rate": 1e-05,
|
1817 |
+
"loss": 0.9984,
|
1818 |
+
"step": 294
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 0.3,
|
1822 |
+
"learning_rate": 1e-05,
|
1823 |
+
"loss": 1.0288,
|
1824 |
+
"step": 295
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 0.3,
|
1828 |
+
"learning_rate": 1e-05,
|
1829 |
+
"loss": 0.9928,
|
1830 |
+
"step": 296
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.3,
|
1834 |
+
"learning_rate": 1e-05,
|
1835 |
+
"loss": 0.992,
|
1836 |
+
"step": 297
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.3,
|
1840 |
+
"learning_rate": 1e-05,
|
1841 |
+
"loss": 0.9863,
|
1842 |
+
"step": 298
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"epoch": 0.3,
|
1846 |
+
"learning_rate": 1e-05,
|
1847 |
+
"loss": 0.9959,
|
1848 |
+
"step": 299
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.3,
|
1852 |
+
"learning_rate": 1e-05,
|
1853 |
+
"loss": 1.0094,
|
1854 |
+
"step": 300
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 0.3,
|
1858 |
+
"eval_val_accuracy": 0.6303333333333334,
|
1859 |
+
"eval_val_loss": 1.0518085956573486,
|
1860 |
+
"eval_val_runtime": 905.7847,
|
1861 |
+
"eval_val_samples_per_second": 1.104,
|
1862 |
+
"eval_val_steps_per_second": 0.138,
|
1863 |
+
"step": 300
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.3,
|
1867 |
+
"learning_rate": 1e-05,
|
1868 |
+
"loss": 1.0049,
|
1869 |
+
"step": 301
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.3,
|
1873 |
+
"learning_rate": 1e-05,
|
1874 |
+
"loss": 1.005,
|
1875 |
+
"step": 302
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.3,
|
1879 |
+
"learning_rate": 1e-05,
|
1880 |
+
"loss": 1.0033,
|
1881 |
+
"step": 303
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.31,
|
1885 |
+
"learning_rate": 1e-05,
|
1886 |
+
"loss": 1.054,
|
1887 |
+
"step": 304
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.31,
|
1891 |
+
"learning_rate": 1e-05,
|
1892 |
+
"loss": 0.9742,
|
1893 |
+
"step": 305
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.31,
|
1897 |
+
"learning_rate": 1e-05,
|
1898 |
+
"loss": 1.0061,
|
1899 |
+
"step": 306
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.31,
|
1903 |
+
"learning_rate": 1e-05,
|
1904 |
+
"loss": 1.015,
|
1905 |
+
"step": 307
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.31,
|
1909 |
+
"learning_rate": 1e-05,
|
1910 |
+
"loss": 1.0414,
|
1911 |
+
"step": 308
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.31,
|
1915 |
+
"learning_rate": 1e-05,
|
1916 |
+
"loss": 0.9995,
|
1917 |
+
"step": 309
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.31,
|
1921 |
+
"learning_rate": 1e-05,
|
1922 |
+
"loss": 0.9901,
|
1923 |
+
"step": 310
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.31,
|
1927 |
+
"learning_rate": 1e-05,
|
1928 |
+
"loss": 0.9936,
|
1929 |
+
"step": 311
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.31,
|
1933 |
+
"learning_rate": 1e-05,
|
1934 |
+
"loss": 1.0476,
|
1935 |
+
"step": 312
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.31,
|
1939 |
+
"learning_rate": 1e-05,
|
1940 |
+
"loss": 0.9987,
|
1941 |
+
"step": 313
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.32,
|
1945 |
+
"learning_rate": 1e-05,
|
1946 |
+
"loss": 1.0564,
|
1947 |
+
"step": 314
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.32,
|
1951 |
+
"learning_rate": 1e-05,
|
1952 |
+
"loss": 1.0129,
|
1953 |
+
"step": 315
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.32,
|
1957 |
+
"learning_rate": 1e-05,
|
1958 |
+
"loss": 0.9667,
|
1959 |
+
"step": 316
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.32,
|
1963 |
+
"learning_rate": 1e-05,
|
1964 |
+
"loss": 1.0264,
|
1965 |
+
"step": 317
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.32,
|
1969 |
+
"learning_rate": 1e-05,
|
1970 |
+
"loss": 0.9835,
|
1971 |
+
"step": 318
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.32,
|
1975 |
+
"learning_rate": 1e-05,
|
1976 |
+
"loss": 1.0199,
|
1977 |
+
"step": 319
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.32,
|
1981 |
+
"learning_rate": 1e-05,
|
1982 |
+
"loss": 0.9652,
|
1983 |
+
"step": 320
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.32,
|
1987 |
+
"learning_rate": 1e-05,
|
1988 |
+
"loss": 0.9874,
|
1989 |
+
"step": 321
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.32,
|
1993 |
+
"learning_rate": 1e-05,
|
1994 |
+
"loss": 1.0079,
|
1995 |
+
"step": 322
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.32,
|
1999 |
+
"learning_rate": 1e-05,
|
2000 |
+
"loss": 1.0858,
|
2001 |
+
"step": 323
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.33,
|
2005 |
+
"learning_rate": 1e-05,
|
2006 |
+
"loss": 1.015,
|
2007 |
+
"step": 324
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.33,
|
2011 |
+
"learning_rate": 1e-05,
|
2012 |
+
"loss": 0.9782,
|
2013 |
+
"step": 325
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.33,
|
2017 |
+
"learning_rate": 1e-05,
|
2018 |
+
"loss": 1.0589,
|
2019 |
+
"step": 326
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.33,
|
2023 |
+
"learning_rate": 1e-05,
|
2024 |
+
"loss": 1.0152,
|
2025 |
+
"step": 327
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.33,
|
2029 |
+
"learning_rate": 1e-05,
|
2030 |
+
"loss": 0.9639,
|
2031 |
+
"step": 328
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.33,
|
2035 |
+
"learning_rate": 1e-05,
|
2036 |
+
"loss": 1.0089,
|
2037 |
+
"step": 329
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.33,
|
2041 |
+
"learning_rate": 1e-05,
|
2042 |
+
"loss": 1.056,
|
2043 |
+
"step": 330
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.33,
|
2047 |
+
"learning_rate": 1e-05,
|
2048 |
+
"loss": 0.985,
|
2049 |
+
"step": 331
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.33,
|
2053 |
+
"learning_rate": 1e-05,
|
2054 |
+
"loss": 1.027,
|
2055 |
+
"step": 332
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.33,
|
2059 |
+
"learning_rate": 1e-05,
|
2060 |
+
"loss": 1.0565,
|
2061 |
+
"step": 333
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.34,
|
2065 |
+
"learning_rate": 1e-05,
|
2066 |
+
"loss": 1.0337,
|
2067 |
+
"step": 334
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.34,
|
2071 |
+
"learning_rate": 1e-05,
|
2072 |
+
"loss": 1.0453,
|
2073 |
+
"step": 335
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.34,
|
2077 |
+
"learning_rate": 1e-05,
|
2078 |
+
"loss": 1.0108,
|
2079 |
+
"step": 336
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.34,
|
2083 |
+
"learning_rate": 1e-05,
|
2084 |
+
"loss": 1.0289,
|
2085 |
+
"step": 337
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.34,
|
2089 |
+
"learning_rate": 1e-05,
|
2090 |
+
"loss": 1.0096,
|
2091 |
+
"step": 338
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.34,
|
2095 |
+
"learning_rate": 1e-05,
|
2096 |
+
"loss": 1.0241,
|
2097 |
+
"step": 339
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.34,
|
2101 |
+
"learning_rate": 1e-05,
|
2102 |
+
"loss": 0.9743,
|
2103 |
+
"step": 340
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.34,
|
2107 |
+
"learning_rate": 1e-05,
|
2108 |
+
"loss": 1.0387,
|
2109 |
+
"step": 341
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.34,
|
2113 |
+
"learning_rate": 1e-05,
|
2114 |
+
"loss": 1.0023,
|
2115 |
+
"step": 342
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.34,
|
2119 |
+
"learning_rate": 1e-05,
|
2120 |
+
"loss": 1.0257,
|
2121 |
+
"step": 343
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.35,
|
2125 |
+
"learning_rate": 1e-05,
|
2126 |
+
"loss": 0.9827,
|
2127 |
+
"step": 344
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.35,
|
2131 |
+
"learning_rate": 1e-05,
|
2132 |
+
"loss": 1.0269,
|
2133 |
+
"step": 345
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.35,
|
2137 |
+
"learning_rate": 1e-05,
|
2138 |
+
"loss": 1.0017,
|
2139 |
+
"step": 346
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.35,
|
2143 |
+
"learning_rate": 1e-05,
|
2144 |
+
"loss": 0.994,
|
2145 |
+
"step": 347
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.35,
|
2149 |
+
"learning_rate": 1e-05,
|
2150 |
+
"loss": 1.0285,
|
2151 |
+
"step": 348
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.35,
|
2155 |
+
"learning_rate": 1e-05,
|
2156 |
+
"loss": 1.0634,
|
2157 |
+
"step": 349
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.35,
|
2161 |
+
"learning_rate": 1e-05,
|
2162 |
+
"loss": 1.0224,
|
2163 |
+
"step": 350
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.35,
|
2167 |
+
"eval_val_accuracy": 0.6265,
|
2168 |
+
"eval_val_loss": 1.0556230545043945,
|
2169 |
+
"eval_val_runtime": 905.4395,
|
2170 |
+
"eval_val_samples_per_second": 1.104,
|
2171 |
+
"eval_val_steps_per_second": 0.138,
|
2172 |
+
"step": 350
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.35,
|
2176 |
+
"learning_rate": 1e-05,
|
2177 |
+
"loss": 0.9755,
|
2178 |
+
"step": 351
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 0.35,
|
2182 |
+
"learning_rate": 1e-05,
|
2183 |
+
"loss": 1.0004,
|
2184 |
+
"step": 352
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 0.35,
|
2188 |
+
"learning_rate": 1e-05,
|
2189 |
+
"loss": 1.0171,
|
2190 |
+
"step": 353
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 0.36,
|
2194 |
+
"learning_rate": 1e-05,
|
2195 |
+
"loss": 1.0,
|
2196 |
+
"step": 354
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 0.36,
|
2200 |
+
"learning_rate": 1e-05,
|
2201 |
+
"loss": 0.9887,
|
2202 |
+
"step": 355
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 0.36,
|
2206 |
+
"learning_rate": 1e-05,
|
2207 |
+
"loss": 1.0387,
|
2208 |
+
"step": 356
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.36,
|
2212 |
+
"learning_rate": 1e-05,
|
2213 |
+
"loss": 0.9966,
|
2214 |
+
"step": 357
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.36,
|
2218 |
+
"learning_rate": 1e-05,
|
2219 |
+
"loss": 1.0213,
|
2220 |
+
"step": 358
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 0.36,
|
2224 |
+
"learning_rate": 1e-05,
|
2225 |
+
"loss": 1.0168,
|
2226 |
+
"step": 359
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 0.36,
|
2230 |
+
"learning_rate": 1e-05,
|
2231 |
+
"loss": 1.0332,
|
2232 |
+
"step": 360
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 0.36,
|
2236 |
+
"learning_rate": 1e-05,
|
2237 |
+
"loss": 1.039,
|
2238 |
+
"step": 361
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"epoch": 0.36,
|
2242 |
+
"learning_rate": 1e-05,
|
2243 |
+
"loss": 1.0034,
|
2244 |
+
"step": 362
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 0.36,
|
2248 |
+
"learning_rate": 1e-05,
|
2249 |
+
"loss": 0.9631,
|
2250 |
+
"step": 363
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 0.37,
|
2254 |
+
"learning_rate": 1e-05,
|
2255 |
+
"loss": 1.0406,
|
2256 |
+
"step": 364
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.37,
|
2260 |
+
"learning_rate": 1e-05,
|
2261 |
+
"loss": 0.9821,
|
2262 |
+
"step": 365
|
2263 |
+
},
|
2264 |
+
{
|
2265 |
+
"epoch": 0.37,
|
2266 |
+
"learning_rate": 1e-05,
|
2267 |
+
"loss": 1.0231,
|
2268 |
+
"step": 366
|
2269 |
+
},
|
2270 |
+
{
|
2271 |
+
"epoch": 0.37,
|
2272 |
+
"learning_rate": 1e-05,
|
2273 |
+
"loss": 1.0272,
|
2274 |
+
"step": 367
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 0.37,
|
2278 |
+
"learning_rate": 1e-05,
|
2279 |
+
"loss": 1.0231,
|
2280 |
+
"step": 368
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"epoch": 0.37,
|
2284 |
+
"learning_rate": 1e-05,
|
2285 |
+
"loss": 0.9833,
|
2286 |
+
"step": 369
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 0.37,
|
2290 |
+
"learning_rate": 1e-05,
|
2291 |
+
"loss": 1.0219,
|
2292 |
+
"step": 370
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 0.37,
|
2296 |
+
"learning_rate": 1e-05,
|
2297 |
+
"loss": 0.9647,
|
2298 |
+
"step": 371
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.37,
|
2302 |
+
"learning_rate": 1e-05,
|
2303 |
+
"loss": 1.0044,
|
2304 |
+
"step": 372
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 0.37,
|
2308 |
+
"learning_rate": 1e-05,
|
2309 |
+
"loss": 0.9968,
|
2310 |
+
"step": 373
|
2311 |
+
},
|
2312 |
+
{
|
2313 |
+
"epoch": 0.38,
|
2314 |
+
"learning_rate": 1e-05,
|
2315 |
+
"loss": 0.9956,
|
2316 |
+
"step": 374
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"epoch": 0.38,
|
2320 |
+
"learning_rate": 1e-05,
|
2321 |
+
"loss": 1.0278,
|
2322 |
+
"step": 375
|
2323 |
+
},
|
2324 |
+
{
|
2325 |
+
"epoch": 0.38,
|
2326 |
+
"learning_rate": 1e-05,
|
2327 |
+
"loss": 0.9908,
|
2328 |
+
"step": 376
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 0.38,
|
2332 |
+
"learning_rate": 1e-05,
|
2333 |
+
"loss": 1.0058,
|
2334 |
+
"step": 377
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 0.38,
|
2338 |
+
"learning_rate": 1e-05,
|
2339 |
+
"loss": 1.0185,
|
2340 |
+
"step": 378
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.38,
|
2344 |
+
"learning_rate": 1e-05,
|
2345 |
+
"loss": 0.97,
|
2346 |
+
"step": 379
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 0.38,
|
2350 |
+
"learning_rate": 1e-05,
|
2351 |
+
"loss": 0.9491,
|
2352 |
+
"step": 380
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 0.38,
|
2356 |
+
"learning_rate": 1e-05,
|
2357 |
+
"loss": 1.0639,
|
2358 |
+
"step": 381
|
2359 |
+
},
|
2360 |
+
{
|
2361 |
+
"epoch": 0.38,
|
2362 |
+
"learning_rate": 1e-05,
|
2363 |
+
"loss": 1.0,
|
2364 |
+
"step": 382
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 0.38,
|
2368 |
+
"learning_rate": 1e-05,
|
2369 |
+
"loss": 0.9812,
|
2370 |
+
"step": 383
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 0.39,
|
2374 |
+
"learning_rate": 1e-05,
|
2375 |
+
"loss": 1.0691,
|
2376 |
+
"step": 384
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 0.39,
|
2380 |
+
"learning_rate": 1e-05,
|
2381 |
+
"loss": 1.0074,
|
2382 |
+
"step": 385
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.39,
|
2386 |
+
"learning_rate": 1e-05,
|
2387 |
+
"loss": 0.9924,
|
2388 |
+
"step": 386
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 0.39,
|
2392 |
+
"learning_rate": 1e-05,
|
2393 |
+
"loss": 0.9976,
|
2394 |
+
"step": 387
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 0.39,
|
2398 |
+
"learning_rate": 1e-05,
|
2399 |
+
"loss": 1.0217,
|
2400 |
+
"step": 388
|
2401 |
+
},
|
2402 |
+
{
|
2403 |
+
"epoch": 0.39,
|
2404 |
+
"learning_rate": 1e-05,
|
2405 |
+
"loss": 0.9745,
|
2406 |
+
"step": 389
|
2407 |
+
},
|
2408 |
+
{
|
2409 |
+
"epoch": 0.39,
|
2410 |
+
"learning_rate": 1e-05,
|
2411 |
+
"loss": 1.0014,
|
2412 |
+
"step": 390
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 0.39,
|
2416 |
+
"learning_rate": 1e-05,
|
2417 |
+
"loss": 1.0192,
|
2418 |
+
"step": 391
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 0.39,
|
2422 |
+
"learning_rate": 1e-05,
|
2423 |
+
"loss": 0.9825,
|
2424 |
+
"step": 392
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.4,
|
2428 |
+
"learning_rate": 1e-05,
|
2429 |
+
"loss": 1.007,
|
2430 |
+
"step": 393
|
2431 |
+
},
|
2432 |
+
{
|
2433 |
+
"epoch": 0.4,
|
2434 |
+
"learning_rate": 1e-05,
|
2435 |
+
"loss": 1.0288,
|
2436 |
+
"step": 394
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 0.4,
|
2440 |
+
"learning_rate": 1e-05,
|
2441 |
+
"loss": 1.0342,
|
2442 |
+
"step": 395
|
2443 |
+
},
|
2444 |
+
{
|
2445 |
+
"epoch": 0.4,
|
2446 |
+
"learning_rate": 1e-05,
|
2447 |
+
"loss": 1.0183,
|
2448 |
+
"step": 396
|
2449 |
+
},
|
2450 |
+
{
|
2451 |
+
"epoch": 0.4,
|
2452 |
+
"learning_rate": 1e-05,
|
2453 |
+
"loss": 0.9884,
|
2454 |
+
"step": 397
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 0.4,
|
2458 |
+
"learning_rate": 1e-05,
|
2459 |
+
"loss": 0.9674,
|
2460 |
+
"step": 398
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 0.4,
|
2464 |
+
"learning_rate": 1e-05,
|
2465 |
+
"loss": 0.9795,
|
2466 |
+
"step": 399
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.4,
|
2470 |
+
"learning_rate": 1e-05,
|
2471 |
+
"loss": 0.9885,
|
2472 |
+
"step": 400
|
2473 |
+
},
|
2474 |
+
{
|
2475 |
+
"epoch": 0.4,
|
2476 |
+
"eval_val_accuracy": 0.627,
|
2477 |
+
"eval_val_loss": 1.0441503524780273,
|
2478 |
+
"eval_val_runtime": 905.3415,
|
2479 |
+
"eval_val_samples_per_second": 1.105,
|
2480 |
+
"eval_val_steps_per_second": 0.138,
|
2481 |
+
"step": 400
|
2482 |
+
}
|
2483 |
+
],
|
2484 |
+
"logging_steps": 1,
|
2485 |
+
"max_steps": 1988,
|
2486 |
+
"num_input_tokens_seen": 0,
|
2487 |
+
"num_train_epochs": 2,
|
2488 |
+
"save_steps": 50,
|
2489 |
+
"total_flos": 0.0,
|
2490 |
+
"train_batch_size": 1,
|
2491 |
+
"trial_name": null,
|
2492 |
+
"trial_params": null
|
2493 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8021270c95d7f97a8c735e62d90edfe50e36e0eedac76c20ba637c77a1dcd38
|
3 |
+
size 6267
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|