File size: 1,606 Bytes
ca16a96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539ed93
 
ca16a96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3dda8
 
ca16a96
 
 
4a3dda8
ca16a96
4a3dda8
ca16a96
 
 
539ed93
ca16a96
 
 
539ed93
 
 
 
 
ca16a96
 
 
 
 
4a3dda8
ca16a96
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: openbmb/MiniCPM-V-2_6
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: miniCPM_finetune_lora_viet_vqa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# miniCPM_finetune_lora_viet_vqa

This model is a fine-tuned version of [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6850

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1566        | 1.3889 | 100  | 2.0881          |
| 1.8447        | 2.7778 | 200  | 1.8452          |
| 1.7103        | 4.1667 | 300  | 1.6850          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.40.0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1