baptiste commited on
Commit
8bbf305
1 Parent(s): 2d0ab97

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: deberta-finetuned-ner-connll-late-stop
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ config: en
22
+ split: train
23
+ args: en
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.830192600803658
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8470945850417079
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8385584324702589
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9228861596598961
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # deberta-finetuned-ner-connll-late-stop
43
+
44
+ This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the wikiann dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.5259
47
+ - Precision: 0.8302
48
+ - Recall: 0.8471
49
+ - F1: 0.8386
50
+ - Accuracy: 0.9229
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 7
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.3408 | 1.0 | 1875 | 0.3639 | 0.7462 | 0.7887 | 0.7669 | 0.8966 |
82
+ | 0.2435 | 2.0 | 3750 | 0.2933 | 0.8104 | 0.8332 | 0.8217 | 0.9178 |
83
+ | 0.1822 | 3.0 | 5625 | 0.3034 | 0.8147 | 0.8388 | 0.8266 | 0.9221 |
84
+ | 0.1402 | 4.0 | 7500 | 0.3667 | 0.8275 | 0.8474 | 0.8374 | 0.9235 |
85
+ | 0.1013 | 5.0 | 9375 | 0.4290 | 0.8285 | 0.8448 | 0.8366 | 0.9227 |
86
+ | 0.0677 | 6.0 | 11250 | 0.4914 | 0.8259 | 0.8473 | 0.8365 | 0.9231 |
87
+ | 0.0439 | 7.0 | 13125 | 0.5259 | 0.8302 | 0.8471 | 0.8386 | 0.9229 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.22.1
93
+ - Pytorch 1.12.1+cu113
94
+ - Datasets 2.4.0
95
+ - Tokenizers 0.12.1