mipo57 commited on
Commit
d6fecc5
1 Parent(s): f74fe1f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: pl
3
+ tags:
4
+ - text-classification
5
+ - financial-sentiment-analysis
6
+ - sentiment-analysis
7
+ datasets:
8
+ - datasets/financial_phrasebank
9
+ metrics:
10
+ - f1
11
+ - accuracy
12
+ - precision
13
+ - recall
14
+ widget:
15
+ - text: "17 polskich firm wśród 50 najszybciej rozwijających się przedsiębiorstw technologicznych regionu."
16
+ example_title: "Example 1"
17
+ - text: "Rusza Black Friday. Lista promocji w sklepach."
18
+ example_title: "Example 2"
19
+ - text: "Akcje CDPROJEKT zanotowały największy spadek wśród spółek notowanych na GPW."
20
+ example_title: "Example 3"
21
+ ---
22
+
23
+
24
+ # FinanceSentimentPL-fast
25
+
26
+ FinanceSentimentPL-fast is a [distiluse](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)-based model for analyzing sentiment of Polish financial news. It was trained on the translated version of [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (20014) for 10 epochs on single RTX3090 gpu.
27
+
28
+ The model will give you a three labels: positive, negative and neutral.
29
+
30
+ ## How to use
31
+
32
+ You can use this model directly with a pipeline for sentiment-analysis:
33
+
34
+ ```python
35
+ from transformers import pipeline
36
+
37
+ nlp = pipeline("sentiment-analysis", model="bardsai/FinanceSentimentPL-fast")
38
+ nlp("17 polskich firm wśród 50 najszybciej rozwijających się przedsiębiorstw technologicznych regionu.")
39
+ ```
40
+ ```bash
41
+ [{'label': 'positive', 'score': 0.9999998807907104}]
42
+ ```
43
+
44
+ ## Performance
45
+ | Metric | Value |
46
+ | --- | ----------- |
47
+ | f1 macro | 0.933 |
48
+ | precision macro | 0.950 |
49
+ | precision macro | 0.950 |
50
+ | recall macro | 0.918 |
51
+ | accuracy | 0.944 |
52
+ | samples per second | 268.1 |
53
+
54
+ (The performance was evaluated on RTX 3090 gpu)
55
+
56
+ ## About bards.ai
57
+
58
+ At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: [bards.ai](https://bards.ai/)
59
+
60
+ Let us know if you use our model :). Also, if you need any help, feel free to contact us at [email protected]