File size: 3,455 Bytes
be0a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b51d677
be0a183
 
 
 
 
 
 
b51d677
 
 
d5088d5
 
 
64fd7d9
 
 
a44ff5f
 
 
4946ada
 
 
 
 
 
 
 
 
 
 
 
2f22fad
 
 
da5f44f
 
 
a794c46
 
 
6d721a3
 
 
 
 
 
 
 
 
 
 
 
9ed7fce
 
 
150f621
 
 
e9ec6ca
 
 
be0a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large v2 PL
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: pl
      split: test
      args: pl
    metrics:
    - type: wer
      value: 6.89
      name: WER
    - type: wer_without_norm
      value: 19.79
      name: WER unnormalized
    - type: cer
      value: 1.88
      name: CER
    - type: mer
      value: 6.84
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/voxpopuli
      type: facebook/voxpopuli
      config: pl
      split: test
    metrics:
    - type: wer
      value: 9.26
      name: WER
    - type: wer_without_norm
      value: 30.25
      name: WER unnormalized
    - type: cer
      value: 5.32
      name: CER
    - type: mer
      value: 9.1
      name: MER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: pl_pl
      split: test
    metrics:
    - type: wer
      value: 9.88
      name: WER
    - type: wer_without_norm
      value: 29.53
      name: WER unnormalized
    - type: cer
      value: 5.09
      name: CER
    - type: mer
      value: 9.73
      name: MER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large v2 PL

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4222
- Wer: 6.9125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1144        | 1.93  | 500  | 0.2016          | 7.4749 |
| 0.0441        | 3.86  | 1000 | 0.2193          | 7.3154 |
| 0.0099        | 5.79  | 1500 | 0.2983          | 7.0804 |
| 0.0048        | 7.72  | 2000 | 0.3514          | 7.0988 |
| 0.0017        | 9.65  | 2500 | 0.3614          | 7.0485 |
| 0.0014        | 11.58 | 3000 | 0.3814          | 7.1240 |
| 0.001         | 13.51 | 3500 | 0.3773          | 6.9931 |
| 0.0005        | 15.44 | 4000 | 0.4085          | 6.9662 |
| 0.0004        | 17.37 | 4500 | 0.4195          | 6.9192 |
| 0.0004        | 19.3  | 5000 | 0.4222          | 6.9125 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2