File size: 3,455 Bytes
be0a183 b51d677 be0a183 b51d677 d5088d5 64fd7d9 a44ff5f 4946ada 2f22fad da5f44f a794c46 6d721a3 9ed7fce 150f621 e9ec6ca be0a183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large v2 PL
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pl
split: test
args: pl
metrics:
- type: wer
value: 6.89
name: WER
- type: wer_without_norm
value: 19.79
name: WER unnormalized
- type: cer
value: 1.88
name: CER
- type: mer
value: 6.84
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: pl
split: test
metrics:
- type: wer
value: 9.26
name: WER
- type: wer_without_norm
value: 30.25
name: WER unnormalized
- type: cer
value: 5.32
name: CER
- type: mer
value: 9.1
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pl_pl
split: test
metrics:
- type: wer
value: 9.88
name: WER
- type: wer_without_norm
value: 29.53
name: WER unnormalized
- type: cer
value: 5.09
name: CER
- type: mer
value: 9.73
name: MER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v2 PL
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4222
- Wer: 6.9125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1144 | 1.93 | 500 | 0.2016 | 7.4749 |
| 0.0441 | 3.86 | 1000 | 0.2193 | 7.3154 |
| 0.0099 | 5.79 | 1500 | 0.2983 | 7.0804 |
| 0.0048 | 7.72 | 2000 | 0.3514 | 7.0988 |
| 0.0017 | 9.65 | 2500 | 0.3614 | 7.0485 |
| 0.0014 | 11.58 | 3000 | 0.3814 | 7.1240 |
| 0.001 | 13.51 | 3500 | 0.3773 | 6.9931 |
| 0.0005 | 15.44 | 4000 | 0.4085 | 6.9662 |
| 0.0004 | 17.37 | 4500 | 0.4195 | 6.9192 |
| 0.0004 | 19.3 | 5000 | 0.4222 | 6.9125 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|