kgawron commited on
Commit
a1c4b0b
1 Parent(s): dc71628

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pl
4
+ license: apache-2.0
5
+ tags:
6
+ - whisper-event
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ - google/fleurs
11
+ metrics:
12
+ - wer
13
+ model-index:
14
+ - name: Whisper Medium PL
15
+ results:
16
+ - task:
17
+ name: Automatic Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice 11.0
21
+ type: mozilla-foundation/common_voice_11_0
22
+ config: pl
23
+ split: test
24
+ args: pl
25
+ metrics:
26
+ - name: Wer
27
+ type: wer
28
+ value: 8.68718413673836
29
+ - task:
30
+ name: Automatic Speech Recognition
31
+ type: automatic-speech-recognition
32
+ dataset:
33
+ name: FLEURS
34
+ type: google/fleurs
35
+ metrics:
36
+ - name: Wer
37
+ type: wer
38
+ value: 8.68718413673836
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # Whisper Medium PL
45
+
46
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.3947
49
+ - Wer: 8.6872
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 1e-05
69
+ - train_batch_size: 4
70
+ - eval_batch_size: 1
71
+ - seed: 42
72
+ - gradient_accumulation_steps: 8
73
+ - total_train_batch_size: 32
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_steps: 500
77
+ - training_steps: 8000
78
+ - mixed_precision_training: Native AMP
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
83
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
84
+ | 0.0805 | 0.48 | 500 | 0.2556 | 10.4888 |
85
+ | 0.0685 | 0.96 | 1000 | 0.2462 | 10.7608 |
86
+ | 0.0356 | 1.45 | 1500 | 0.2561 | 9.6728 |
87
+ | 0.0337 | 1.93 | 2000 | 0.2327 | 9.6459 |
88
+ | 0.017 | 2.41 | 2500 | 0.2444 | 9.9464 |
89
+ | 0.0179 | 2.9 | 3000 | 0.2554 | 9.6476 |
90
+ | 0.0056 | 3.38 | 3500 | 0.3001 | 9.3638 |
91
+ | 0.007 | 3.86 | 4000 | 0.2809 | 9.2245 |
92
+ | 0.0033 | 4.34 | 4500 | 0.3235 | 9.3437 |
93
+ | 0.0024 | 4.83 | 5000 | 0.3148 | 9.0633 |
94
+ | 0.0008 | 5.31 | 5500 | 0.3416 | 9.0112 |
95
+ | 0.0011 | 5.79 | 6000 | 0.3876 | 9.1858 |
96
+ | 0.0004 | 6.27 | 6500 | 0.3745 | 8.7292 |
97
+ | 0.0003 | 6.76 | 7000 | 0.3704 | 9.0314 |
98
+ | 0.0003 | 7.24 | 7500 | 0.3929 | 8.6553 |
99
+ | 0.0002 | 7.72 | 8000 | 0.3947 | 8.6872 |
100
+
101
+
102
+ ### Framework versions
103
+
104
+ - Transformers 4.26.0.dev0
105
+ - Pytorch 1.13.0+cu117
106
+ - Datasets 2.7.1.dev0
107
+ - Tokenizers 0.13.2