update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pl
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_11_0
|
10 |
+
- google/fleurs
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
+
model-index:
|
14 |
+
- name: Whisper Medium PL
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 11.0
|
21 |
+
type: mozilla-foundation/common_voice_11_0
|
22 |
+
config: pl
|
23 |
+
split: test
|
24 |
+
args: pl
|
25 |
+
metrics:
|
26 |
+
- name: Wer
|
27 |
+
type: wer
|
28 |
+
value: 8.68718413673836
|
29 |
+
- task:
|
30 |
+
name: Automatic Speech Recognition
|
31 |
+
type: automatic-speech-recognition
|
32 |
+
dataset:
|
33 |
+
name: FLEURS
|
34 |
+
type: google/fleurs
|
35 |
+
metrics:
|
36 |
+
- name: Wer
|
37 |
+
type: wer
|
38 |
+
value: 8.68718413673836
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# Whisper Medium PL
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.3947
|
49 |
+
- Wer: 8.6872
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 1e-05
|
69 |
+
- train_batch_size: 4
|
70 |
+
- eval_batch_size: 1
|
71 |
+
- seed: 42
|
72 |
+
- gradient_accumulation_steps: 8
|
73 |
+
- total_train_batch_size: 32
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_steps: 500
|
77 |
+
- training_steps: 8000
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
84 |
+
| 0.0805 | 0.48 | 500 | 0.2556 | 10.4888 |
|
85 |
+
| 0.0685 | 0.96 | 1000 | 0.2462 | 10.7608 |
|
86 |
+
| 0.0356 | 1.45 | 1500 | 0.2561 | 9.6728 |
|
87 |
+
| 0.0337 | 1.93 | 2000 | 0.2327 | 9.6459 |
|
88 |
+
| 0.017 | 2.41 | 2500 | 0.2444 | 9.9464 |
|
89 |
+
| 0.0179 | 2.9 | 3000 | 0.2554 | 9.6476 |
|
90 |
+
| 0.0056 | 3.38 | 3500 | 0.3001 | 9.3638 |
|
91 |
+
| 0.007 | 3.86 | 4000 | 0.2809 | 9.2245 |
|
92 |
+
| 0.0033 | 4.34 | 4500 | 0.3235 | 9.3437 |
|
93 |
+
| 0.0024 | 4.83 | 5000 | 0.3148 | 9.0633 |
|
94 |
+
| 0.0008 | 5.31 | 5500 | 0.3416 | 9.0112 |
|
95 |
+
| 0.0011 | 5.79 | 6000 | 0.3876 | 9.1858 |
|
96 |
+
| 0.0004 | 6.27 | 6500 | 0.3745 | 8.7292 |
|
97 |
+
| 0.0003 | 6.76 | 7000 | 0.3704 | 9.0314 |
|
98 |
+
| 0.0003 | 7.24 | 7500 | 0.3929 | 8.6553 |
|
99 |
+
| 0.0002 | 7.72 | 8000 | 0.3947 | 8.6872 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.26.0.dev0
|
105 |
+
- Pytorch 1.13.0+cu117
|
106 |
+
- Datasets 2.7.1.dev0
|
107 |
+
- Tokenizers 0.13.2
|