--- language: - pl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: Whisper Medium PL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pl split: test args: pl metrics: # - type: wer # value: 8.68718413673836 # name: Wer - type: wer value: 8.71 name: WER - type: wer_without_norm value: 22.00 name: WER unnormalized - type: cer value: 2.41 name: CER - type: mer value: 8.65 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: pl split: test metrics: - type: wer value: 11.99 name: WER - type: wer_without_norm value: 30.9 name: WER unnormalized - type: cer value: 6.54 name: CER - type: mer value: 11.68 name: MER --- # Whisper Medium PL This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set: - Loss: 0.3947 - Wer: 8.6872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0805 | 0.48 | 500 | 0.2556 | 10.4888 | | 0.0685 | 0.96 | 1000 | 0.2462 | 10.7608 | | 0.0356 | 1.45 | 1500 | 0.2561 | 9.6728 | | 0.0337 | 1.93 | 2000 | 0.2327 | 9.6459 | | 0.017 | 2.41 | 2500 | 0.2444 | 9.9464 | | 0.0179 | 2.9 | 3000 | 0.2554 | 9.6476 | | 0.0056 | 3.38 | 3500 | 0.3001 | 9.3638 | | 0.007 | 3.86 | 4000 | 0.2809 | 9.2245 | | 0.0033 | 4.34 | 4500 | 0.3235 | 9.3437 | | 0.0024 | 4.83 | 5000 | 0.3148 | 9.0633 | | 0.0008 | 5.31 | 5500 | 0.3416 | 9.0112 | | 0.0011 | 5.79 | 6000 | 0.3876 | 9.1858 | | 0.0004 | 6.27 | 6500 | 0.3745 | 8.7292 | | 0.0003 | 6.76 | 7000 | 0.3704 | 9.0314 | | 0.0003 | 7.24 | 7500 | 0.3929 | 8.6553 | | 0.0002 | 7.72 | 8000 | 0.3947 | 8.6872 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2