File size: 2,808 Bytes
c46e66d 3fd03c0 c46e66d 3fd03c0 c46e66d 3fd03c0 c46e66d 3fd03c0 c46e66d 3fd03c0 c46e66d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
datasets:
- ehartford/dolphin
- jondurbin/airoboros-2.2.1
- ehartford/dolphin-coder
- teknium/openhermes
- ise-uiuc/Magicoder-OSS-Instruct-75K
- ise-uiuc/Magicoder-Evol-Instruct-110K
- LDJnr/Capybara
- argilla/ultrafeedback-binarized-preferences-cleaned
language:
- en
license: apache-2.0
quantized_by: bartowski
pipeline_tag: text-generation
---
## Exllama v2 Quantizations of dolphin-2.6-mistral-7b-dpo-laser
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization.
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser/
Model Size: 7b
| Branch | Bits | lm_head bits | Dataset | Size | Description |
| ----- | ---- | ------- | ------- | ------ | ------------ |
| [8_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/8_0) | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/6_5) | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/5_0) | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. |
| [4_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/4_0) | 4.0 | 6.0 | Default | 6.5 GB | Just under GPTQ equivalent bits per weight. |
| [3_5](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/3_5) | 3.5 | 6.0 | Default | 6.1 GB | Lower quality, only use if you have to. |
All VRAM requirements estimated from 16k context. For 32k context add ~2 GB.
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `dolphin-2.6-mistral-7b-dpo-laser-exl2`:
```shell
mkdir dolphin-2.6-mistral-7b-dpo-laser-exl2
huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
```shell
mkdir dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5
huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2 --revision 6_5 --local-dir dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5 --local-dir-use-symlinks False
```
|