File size: 6,618 Bytes
864fef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
language:
- en
license: mit
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
pipeline_tag: text-generation
model-index:
- name: Mistral-ORPO-β
  results:
  # AI2 Reasoning Challenge (25-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 61.18
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # HellaSwag (10-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 84.03
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # TruthfulQA (0-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
       - type: mc2
         value: 47.69
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # GSM8k (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 39.8
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # MMLU (5-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 63.26
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # Winogrande (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 79.24
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
  - task:
      type: text-generation
    dataset:
      name: AlpacaEval 1
      type: AlpacaEval
    metrics:
    - type: AlpacaEval 1.0
      value: 91.16%
      name: Win Rate
    source:
      url: https://tatsu-lab.github.io/alpaca_eval/
      name: Leaderboard
  - task:
      type: text-generation
    dataset:
      name: AlpacaEval 2
      type: AlpacaEval
    metrics:
    - type: AlpacaEval 2.0
      value: 12.57%
      name: Win Rate
    source:
      url: https://tatsu-lab.github.io/alpaca_eval/
      name: Leaderboard
  - task:
      type: text-generation
    dataset:
      name: MT-Bench
      type: MT-Bench
    metrics:
    - type: MT-Bench
      value: 7.322
      name: Score
    source:
      url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
      name: self-reported
quantized_by: bartowski
---

## Exllama v2 Quantizations of mistral-orpo-beta

Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.15">turboderp's ExLlamaV2 v0.0.15</a> for quantization.

<b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/kaist-ai/mistral-orpo-beta

| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/mistral-orpo-beta-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/mistral-orpo-beta-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/mistral-orpo-beta-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB |  9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/mistral-orpo-beta-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/mistral-orpo-beta-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |

## Download instructions

With git:

```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/mistral-orpo-beta-exl2 mistral-orpo-beta-exl2-6_5
```

With huggingface hub (credit to TheBloke for instructions):

```shell
pip3 install huggingface-hub
```

To download the `main` (only useful if you only care about measurement.json) branch to a folder called `mistral-orpo-beta-exl2`:

```shell
mkdir mistral-orpo-beta-exl2
huggingface-cli download bartowski/mistral-orpo-beta-exl2 --local-dir mistral-orpo-beta-exl2 --local-dir-use-symlinks False
```

To download from a different branch, add the `--revision` parameter:

Linux:

```shell
mkdir mistral-orpo-beta-exl2-6_5
huggingface-cli download bartowski/mistral-orpo-beta-exl2 --revision 6_5 --local-dir mistral-orpo-beta-exl2-6_5 --local-dir-use-symlinks False
```

Windows (which apparently doesn't like _ in folders sometimes?):

```shell
mkdir mistral-orpo-beta-exl2-6.5
huggingface-cli download bartowski/mistral-orpo-beta-exl2 --revision 6_5 --local-dir mistral-orpo-beta-exl2-6.5 --local-dir-use-symlinks False
```

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski