basakderyakilic commited on
Commit
1fda48d
1 Parent(s): dfa4515

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -180.31 +/- 24.37
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -88.94 +/- 132.84
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4b95cf3880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4b95cf3910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4b95cf39a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4b95cf3a30>", "_build": "<function ActorCriticPolicy._build at 0x7b4b95cf3ac0>", "forward": "<function ActorCriticPolicy.forward at 0x7b4b95cf3b50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4b95cf3be0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4b95cf3c70>", "_predict": "<function ActorCriticPolicy._predict at 0x7b4b95cf3d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4b95cf3d90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4b95cf3e20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4b95cf3eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b4b95e856c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730710703534382051, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZerr2qV2Y+89ATP7/otr8YTEO/+iSHPgAAAAAAAAAAJrq5PfAzvT/q5I0+PBcDvmJeYj1r+Y09AAAAAAAAAADNzZI82CSGP4oKVz6XZGW/4+SmvpIxTb0AAAAAAAAAALAAmT67/x8/ie8KP0Yka78FB6m+UsgWPQAAAAAAAAAAml6VvD8/qj8tp2O+zy0Dv00M1DtXrhS9AAAAAAAAAADaQZi9/VO8P0rxLr7ZYUu+QDpuvvJ8074AAAAAAAAAAAA4NDsN0r0/O+05PaV8qz7vwO68qlTBvQAAAAAAAAAAzSmdPs6orD/o4U0/HEUCvtq5ir0Wo6A9AAAAAAAAAAANY54+yDDyPQwIOj7hGWS/k4DRPvzqmz4AAAAAAAAAAJrC/725nno/+7W7vnF0W7/XOBS9DvmDvQAAAAAAAAAAwFKTvctGsD3+ruO9jcWUv4kukjyeCgM+AAAAAAAAAACzSw29iT4WP1rib71rSV6/9+nwvBUn2rwAAAAAAAAAAF0k377Rhc4+ZXpCv0rzhb9CLzM+W8mmvQAAAAAAAAAAWi/UPWQMsj/Wl/M+rqYuvhukw73t8sK9AAAAAAAAAAAN4gG+97mcPgq8ub4vMZK/Lu/fPmgrZj0AAAAAAAAAAIV55b7yHrY+hOcyvxkTaL/lLhs+/SqrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFIp5YYBNmGMAWyUS1mMAXSUR0BZqhzzVc2SdX2UKGgGR8BmBXRPXTVlaAdLYGgIR0BZqh0ZFXq8dX2UKGgGR8BhP7/ACW/raAdLbGgIR0BZquyNXHR1dX2UKGgGR8A7qIGQjlgdaAdLTWgIR0BZrEjC53C9dX2UKGgGR8ByqDpkf9xZaAdLXmgIR0BZruKCQLeAdX2UKGgGR8BmuQDPnjhlaAdLdGgIR0BZsZWaMJhOdX2UKGgGR8Bsmwj2SMcZaAdLeGgIR0BZsf/BFd9ldX2UKGgGR8BbQj9jwx33aAdLW2gIR0BZsro8p1A8dX2UKGgGR8BB0djwx33YaAdLRGgIR0BZtyMDOkckdX2UKGgGR8BntiMBIWgwaAdLbmgIR0BZuTz7MxGldX2UKGgGR8BLI8cENe+maAdLQGgIR0BZuf0h/y5JdX2UKGgGR8BaCofCAMDwaAdLWWgIR0BZumvr4WUKdX2UKGgGR8BYfswDeTFEaAdLRWgIR0BZvbqptJnQdX2UKGgGR8BG/z2FnIyTaAdLbmgIR0BZv0vXbuc+dX2UKGgGR8BRY4QBgeA/aAdLRWgIR0BZwFFYuCf6dX2UKGgGR8BgVIZ62OQyaAdLcWgIR0BZwgssg+yJdX2UKGgGR8BogZzBAOawaAdLb2gIR0BZwz5GjKxLdX2UKGgGR8Bga6dz4k/saAdLYWgIR0BZw55/smfHdX2UKGgGR8Ba2Ip+c6NmaAdLiGgIR0BZxdRaX8fndX2UKGgGR8BnqvOfNA1OaAdLfWgIR0BZx53X7LuAdX2UKGgGR8BTpC2c8TzvaAdLTWgIR0BZytSMtK7JdX2UKGgGR8BYt74zrNW3aAdLYmgIR0BZy3Qla8pTdX2UKGgGR8BN2lZgXuVpaAdLZWgIR0BZy3XmNipedX2UKGgGR8BrT7rLQokSaAdLbGgIR0BZzL4agmJFdX2UKGgGR8AqVI7vG6wuaAdLWWgIR0BZz5eNT987dX2UKGgGR8BWXC/GlyimaAdLRGgIR0BZ0B4IKMNudX2UKGgGR8BD3qSgXdj5aAdLnWgIR0BZ0VBD5TIedX2UKGgGR8Blhdw1ivxIaAdLW2gIR0BZ0TaXa8HwdX2UKGgGR8BEq4Ia99MLaAdLU2gIR0BZ0mtdRiw0dX2UKGgGR8Bq4I2XLNfPaAdLYmgIR0BZ0oB/7SApdX2UKGgGR8BhURJsfq5caAdLUGgIR0BZ08XzlLezdX2UKGgGR8BYaF6AvtdBaAdLVGgIR0BZ1h3V09yMdX2UKGgGR8BUBD/lyR0VaAdLU2gIR0BZ2V+d9UjtdX2UKGgGR8BPNkVFhG6PaAdLRWgIR0BZ24d6sySFdX2UKGgGR8BTYw6IWP92aAdLZ2gIR0BZ27ulXRw7dX2UKGgGR8BxcPF85S3taAdLZmgIR0BZ4CMcZLqVdX2UKGgGR8BlBHG2kSElaAdLSWgIR0BZ4SYPXkHVdX2UKGgGR8BSqKjFhoduaAdLRGgIR0BZ4an752yLdX2UKGgGR8BXZU6kqMFVaAdLV2gIR0BZ4aq0dBBzdX2UKGgGR8BhUi5d4VynaAdLfGgIR0BZ4aBEroW6dX2UKGgGR8BmhEGcFyJbaAdLZ2gIR0BZ5DaK1og3dX2UKGgGR8BMrB0Qsf7raAdLPGgIR0BZ5PFvQ4S6dX2UKGgGR8AxZnKnvUjLaAdLWWgIR0BZ5ZdSl3yJdX2UKGgGR8BbKRisny/caAdLT2gIR0BZ5tVzZHurdX2UKGgGR8BbqGUnogV5aAdLaWgIR0BZ6mu5jH4odX2UKGgGR8BmZpGDtgKGaAdLiGgIR0BZ66SHM2WIdX2UKGgGR8BQyGl67dzoaAdLUmgIR0BZ7axgRbr1dX2UKGgGR8BOEcU/OdGzaAdLQWgIR0BZ8IKx9oexdX2UKGgGR8BNiJTMqz7eaAdLUmgIR0BZ8Gac7QsxdX2UKGgGR8BQESD/VAiWaAdLfWgIR0BZ8RzeXRgJdX2UKGgGR8BgCLxNIsiCaAdLfmgIR0BZ8YVRDTjOdX2UKGgGR8BVVDV2A5JcaAdLRGgIR0BZ8rHU+cH4dX2UKGgGR8BLgoj4YaYNaAdLTGgIR0BZ9FnAZbY9dX2UKGgGR8BbEAudwvQGaAdLXmgIR0BZ+GnXNC7cdX2UKGgGR8BoRSslsxfwaAdLUWgIR0BZ+UdzXBgvdX2UKGgGR8BcllWsA/9paAdLfWgIR0BZ+ogvDgqFdX2UKGgGR8BRlR5xBE8aaAdLQGgIR0BZ+z238XN1dX2UKGgGR8BqsSyWzF/AaAdLSmgIR0BZ/HS0BwMqdX2UKGgGR8BW0GMXJo0zaAdLdGgIR0BZ/VVYISlFdX2UKGgGR8BWZSKvV3EAaAdLb2gIR0BZ/8DOkcjrdX2UKGgGR8BZgjJMg2ZRaAdLcGgIR0BaAgdGRV6vdX2UKGgGR8BEJjD0lJHzaAdLSmgIR0BaAniR4hUzdX2UKGgGR8BacSSV4X41aAdLV2gIR0BaBSAlOXVtdX2UKGgGR8BxXgE6kqMFaAdLmGgIR0BaCTF6zE75dX2UKGgGR0A6cRm9QGfPaAdLbmgIR0BaCsG1QZXNdX2UKGgGR8Boi9TWGyooaAdLT2gIR0BaC8p5NXYEdX2UKGgGR8BmFvRsuWa+aAdLfmgIR0BaDJKJ2t+1dX2UKGgGR8BmLG85CF9KaAdLdmgIR0BaDc7yQPqcdX2UKGgGR8BfnuKfnOjZaAdLVWgIR0BaD2LYPGyYdX2UKGgGR8Bndj/6wdKeaAdLcWgIR0BaD9gBtDUmdX2UKGgGR8BgZfmV7hNuaAdLX2gIR0BaEJ9Vmz0IdX2UKGgGR8Bb1TodMj/uaAdLaGgIR0BaFKZ2IO6NdX2UKGgGR8A4aLkCFK02aAdLZGgIR0BaFP6j3225dX2UKGgGR8Bd03w9aEBbaAdLlmgIR0BaFwqZtvXLdX2UKGgGR8BUUunQ6ZH/aAdLQGgIR0BaGRgqmTC+dX2UKGgGR8BhgIJZ4fOlaAdLZWgIR0BaGOYhMajvdX2UKGgGR8Bj5y53C9AYaAdLdGgIR0BaGf0yxiXqdX2UKGgGR8BStY+W4Vh1aAdLV2gIR0BaGsM3IdU9dX2UKGgGR8BHnkhzNliCaAdLaWgIR0BaHAR9PUKBdX2UKGgGR8BTzE70WdmQaAdLS2gIR0BaHfw/gR9PdX2UKGgGR8BanAl0HQhPaAdLWmgIR0BaILMgU1yedX2UKGgGR8BqD8hA4XGfaAdLfmgIR0BaIWiHqNZNdX2UKGgGR8BgVEhzNliCaAdLWGgIR0BaIxWT5ftydX2UKGgGR8BbGrU5MlC1aAdLU2gIR0BaI4DoyKvWdX2UKGgGR8BllCLQ5WBCaAdLVWgIR0BaJRoIv8IidX2UKGgGR8BPOjoQnQY2aAdLQWgIR0BaJnTy8SPEdX2UKGgGR8BhmEsg+yJLaAdLdmgIR0BaKRaxHG0edX2UKGgGR8BZ9qWC2+fzaAdLS2gIR0BaKsxj8UEgdX2UKGgGR8BL7R77bcoIaAdLZGgIR0BaLTsY2sJZdX2UKGgGR8BEuxkVeruIaAdLbGgIR0BaLuW4Vh1DdX2UKGgGR8BM+APNFBppaAdLR2gIR0BaL4axX4j9dX2UKGgGR8BgXDJp35eraAdLhmgIR0BaMSSFGoaUdX2UKGgGR8Bal1j7Q9idaAdLaGgIR0BaM+1KGtZFdX2UKGgGR8BLEPwNLDhtaAdLeGgIR0BaN0iyIHkcdX2UKGgGR0BKpTsY2sJZaAdLU2gIR0BaORSpBHCodX2UKGgGR8ByguvGIbfhaAdLfGgIR0BaOhrSE12rdX2UKGgGR8BDYUQK8cuKaAdLdmgIR0BaOgdGRV6vdX2UKGgGR8A4nsqrilzmaAdLR2gIR0BaO+/xlQMydX2UKGgGR8BTjW2kSElFaAdLbmgIR0BaP4BFNL13dX2UKGgGR8BYadPLxI8RaAdLeGgIR0BaP3oLXtjTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0964c4d6c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0964c4d750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0964c4d7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0964c4d870>", "_build": "<function ActorCriticPolicy._build at 0x7b0964c4d900>", "forward": "<function ActorCriticPolicy.forward at 0x7b0964c4d990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0964c4da20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0964c4dab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b0964c4db40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0964c4dbd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0964c4dc60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0964c4dcf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b0964bed000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730715311559974939, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaYMz3tfKg/15qDPn4jp75jY407iB6rPQAAAAAAAAAAXZmkPqD5iz+yiwM/ijdfv74NBr4tIKA9AAAAAAAAAABAekE+whLLPmZbyT4M1qS/T3ugvK1inj4AAAAAAAAAACNwbr6b4Cs/bpD4vnm9iL8om+s+mVa1PgAAAAAAAAAA83v+vTW2OD7XvIc9626xv7HzR78+CNG+AAAAAAAAAADN39E8MYEdPzqkXz7bdYe/W221vk0ydr4AAAAAAAAAAIAdur08lK0/gtp4viEuGb/tuRQ//uOCPgAAAAAAAAAAM9eWu4wvsj9V+xC+gXicvhwmhLot81m9AAAAAAAAAAAA6BA9MquUP3reWT7Vq0G/SJW+vcHcAL4AAAAAAAAAAACx8LyI1aw/iIv7vqn34r7o6Zg8Jv0kPQAAAAAAAAAA2i9QvjQ9ij82Yua9K3JAv4jBB72J+sQ9AAAAAAAAAAAWgVu+TuqEP5DxWr+Q7lm/B7+TPlWIhT4AAAAAAAAAAIC4ID7w160/ciNbPnf0Kr8OAwa9f2OyPgAAAAAAAAAAsxUDvU9zvT/aA8y9MracvRLCjr0mpiq9AAAAAAAAAABmlbA80XW8P3nfvj5+pes+18YFvQo+4L0AAAAAAAAAABu6tr4rVPc9qN9QP1KSh787QhDA8uOLwAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFiI0qH44+MAWyUS0eMAXSUR0BHXlbeMyaedX2UKGgGR8BikF4TsY2saAdLamgIR0BHZEAYHgP3dX2UKGgGR8B4jl+YtxuLaAdLkmgIR0BHY5lnRLK3dX2UKGgGR8BesmCyyD7JaAdLRmgIR0BHZx64UeuFdX2UKGgGR8BRoNucc2itaAdLbWgIR0BHbZQxesxPdX2UKGgGR8BY0Lsa86FNaAdLPGgIR0BHa7wrlNlAdX2UKGgGR8BkSEAo5PuYaAdLWGgIR0BHcZaNdZ7pdX2UKGgGR8BtSudoWYWtaAdLbWgIR0BHd243FUADdX2UKGgGR8BeWrwF1SwXaAdLYWgIR0BHeIfCAMDwdX2UKGgGR8BeZM6JZW7waAdLUGgIR0BHfl+uvECOdX2UKGgGR8BXa/D+BH09aAdLTmgIR0BHgTmOlwcYdX2UKGgGR8Bn7Qhje9BbaAdLaGgIR0BHg1GkN4JNdX2UKGgGR8Bl39roGIKuaAdLXGgIR0BHhLJ0W/JvdX2UKGgGR8BoKk/MW43FaAdLbGgIR0BHheeFtbcHdX2UKGgGR8BYbWlQ/HHWaAdLOmgIR0BHif+sHSncdX2UKGgGR8BhNCJVKf4AaAdLaGgIR0BHiTfaYeDGdX2UKGgGR8BeytC/oJRgaAdLYmgIR0BHjXOGCZnddX2UKGgGR8BhSOx4Y77saAdLd2gIR0BHlCdJ8OTadX2UKGgGR8BnDKunuRcNaAdLaGgIR0BHl6bnX/YKdX2UKGgGR8Bi1IM2FWXDaAdLV2gIR0BHl74rSVnmdX2UKGgGR0AnAxSHdoFnaAdLQWgIR0BHmhrvb48EdX2UKGgGR8BIMV2zOX3QaAdLTGgIR0BHnnSOR1YAdX2UKGgGR8BYY571Iy0saAdLQGgIR0BHn1Z1V5rydX2UKGgGR8BgIMYqG1x9aAdLWGgIR0BHnjgAIY3vdX2UKGgGR8BnaI0TDfm+aAdLfWgIR0BHpShrWRRudX2UKGgGR8BQGaClJpWWaAdLPmgIR0BHpTImw7kodX2UKGgGR8BeSuDWbwz+aAdLlmgIR0BHrqKP4mCzdX2UKGgGR8BaFNKqXF98aAdLSGgIR0BHsbxVhkRSdX2UKGgGR8BPhDkU9IPLaAdLO2gIR0BHtEBsANobdX2UKGgGR8BWUxvNu+AVaAdLPWgIR0BHtWTgVGkOdX2UKGgGR8BSYPfCQ9zPaAdLPGgIR0BHu+A3DNyHdX2UKGgGR8BkQAHJLdvbaAdLdmgIR0BHvLnkkrwwdX2UKGgGR8Bghg/5ckdFaAdLVGgIR0BHvvegte2NdX2UKGgGR8BYZpoXbdrPaAdLbmgIR0BHwLsrupjudX2UKGgGR8Bw8c7T2FnJaAdLdWgIR0BHxSad+XqrdX2UKGgGR8B0YZvDP4VRaAdLgmgIR0BHxQuuieundX2UKGgGR8BcujTvy9VWaAdLTGgIR0BHxAxSHdoGdX2UKGgGR8Be9sFlkH2RaAdLh2gIR0BHyKMWGh24dX2UKGgGR8BegvjKgZjyaAdLSmgIR0BHyjziCJ40dX2UKGgGR8BguOPBBRhuaAdLZGgIR0BHy3dsSCe3dX2UKGgGR8BIyu9OARTTaAdLZWgIR0BH0Pv0AcT8dX2UKGgGR8BU7GH58BuGaAdLR2gIR0BH0dxAB1cMdX2UKGgGR8BU4Ieo1k1/aAdLRGgIR0BH3P3SKFZgdX2UKGgGR8Bq9NNQCSzPaAdLW2gIR0BH3ois4ku6dX2UKGgGR8B1mnefqX4TaAdLVmgIR0BH3588cMmXdX2UKGgGR8BfozWXkYGdaAdLR2gIR0BH4WxY7q6fdX2UKGgGR8Bku3IuGsV+aAdLfmgIR0BH4y6MBIWhdX2UKGgGR8BgCKoVEd/8aAdLQWgIR0BH5G0eEIw/dX2UKGgGR8BsfqAQQL/kaAdLaGgIR0BH52tEG7jDdX2UKGgGR8BunaDZlFtsaAdLRWgIR0BH67xNIsiCdX2UKGgGR8BqkWzt1IRRaAdLVWgIR0BH7jW9US7HdX2UKGgGR8BUpi4Wk8A8aAdLVWgIR0BH7TD4xk/bdX2UKGgGR8BpkwBmwqy4aAdLcWgIR0BH85vLowEhdX2UKGgGR8BaYUXxe9i+aAdLaGgIR0BH8wPiDM/ydX2UKGgGR8BlXDRfF72MaAdLTmgIR0BH9nG8274BdX2UKGgGR8BfPxAKOT7maAdLbWgIR0BH/OivgWJrdX2UKGgGR8Bzwl+fAbhnaAdLamgIR0BH/mBnSOR1dX2UKGgGR8BcrXDaXa8IaAdLQ2gIR0BIAxjJ+2E1dX2UKGgGR8BWV4mb9ZRsaAdLTGgIR0BIBYDs+mm+dX2UKGgGR8Bo1IqwyIpIaAdLT2gIR0BIBXgk1MufdX2UKGgGR8BeEfI8yN4raAdLWmgIR0BICGFJxvNvdX2UKGgGR8BU+0Jv5xioaAdLd2gIR0BICvF3pwCKdX2UKGgGR8BVs8PWhAW0aAdLP2gIR0BIC/M4cWCVdX2UKGgGR8BdJyJGe+VUaAdLSmgIR0BIEAVfu1F6dX2UKGgGR8Bljt0o0ALiaAdLW2gIR0BIEqKHfuTidX2UKGgGR8Bfwa59Vmz0aAdLV2gIR0BIFMyzollcdX2UKGgGR8BkjwjbBXS0aAdLbGgIR0BIGBgeA/cGdX2UKGgGR8BZr1AiV0LdaAdLOGgIR0BIIgJb+tKadX2UKGgGR8BZg4nBtUGWaAdLYWgIR0BIIunuRcNZdX2UKGgGR0A477r9l2/0aAdLk2gIR0BIJqASWZ7YdX2UKGgGR8BeTW3OObRXaAdLQ2gIR0BIKiIUJv5ydX2UKGgGR8Bb3jB/I8yOaAdLV2gIR0BIKeFL39JjdX2UKGgGR8B4csod+5OKaAdLeGgIR0BILwhGH58CdX2UKGgGR8BU0OchC+lCaAdLSGgIR0BIL5byH2ytdX2UKGgGR8BVtqS5iExqaAdLSmgIR0BIMaFdszl+dX2UKGgGR8Bb0mZuyeI3aAdLf2gIR0BINZyuIRAbdX2UKGgGR8BgeFxdY4hmaAdLZGgIR0BINX3YcvM9dX2UKGgGR8BwB2zVtoBaaAdLeWgIR0BIOT1TR6WxdX2UKGgGR8BT6NYbKifyaAdLN2gIR0BIQcNpdrwfdX2UKGgGR8BFW+YtxuKoaAdLPWgIR0BIQQgs9SuRdX2UKGgGR8BfCIo3Jgb7aAdLY2gIR0BIQisfaHsUdX2UKGgGR8BoPjX6InBtaAdLgGgIR0BIRVuzhP0qdX2UKGgGR8BwP3o9s7+2aAdLYmgIR0BIRqlxffGddX2UKGgGR8BhFKi0v4/NaAdLX2gIR0BISGt6ol2NdX2UKGgGR8BMTv1lGwzMaAdLTWgIR0BISEYO2AoYdX2UKGgGR8BdRrk0aZQYaAdLa2gIR0BISOUliSaFdX2UKGgGR8BhmyFAVwglaAdLN2gIR0BISo+wC8vmdX2UKGgGR8BonpZSvTw2aAdLQmgIR0BIVTVtoBaLdX2UKGgGR8BtQdMIu5BkaAdLXWgIR0BIVuOjqOcUdX2UKGgGR8BbuwAp8WsSaAdLTGgIR0BIWiCJ40MxdX2UKGgGR8BzB5ClabF1aAdLaWgIR0BIXYk3S8aodX2UKGgGR8BhYdr433pOaAdLW2gIR0BIXgAyVObidX2UKGgGR8Bg5nS6UaAGaAdLaGgIR0BIYfwI+nqFdX2UKGgGR8BtIJc5bQkYaAdLVGgIR0BIaedTYNAkdX2UKGgGR8B8V0ixFAmiaAdLZGgIR0BIafjS5RTCdX2UKGgGR8BrhAeT3Zf2aAdLTmgIR0BIbsHbAUL2dX2UKGgGR8BW7QE+xGDuaAdLYWgIR0BIcS8an753dX2UKGgGR8BfS/o/zJ6qaAdLW2gIR0BIdGIKtxMndX2UKGgGR8BhrCSHM2WIaAdLX2gIR0BIc6Hj6vaDdX2UKGgGR8BZG89nscABaAdLW2gIR0BIdsINVinYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccbcea00fd52f38f605350401a9208a3fcf7f5a2856023aff56d107827a398d2
3
- size 147866
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9442b3ceb9b720fd3d2804d4d83417fe71236ae7d7669134f686359f86f7230
3
+ size 147865
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4b95cf3880>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4b95cf3910>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4b95cf39a0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4b95cf3a30>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b4b95cf3ac0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b4b95cf3b50>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4b95cf3be0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4b95cf3c70>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b4b95cf3d00>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4b95cf3d90>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4b95cf3e20>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4b95cf3eb0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b4b95e856c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1730710703534382051,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZerr2qV2Y+89ATP7/otr8YTEO/+iSHPgAAAAAAAAAAJrq5PfAzvT/q5I0+PBcDvmJeYj1r+Y09AAAAAAAAAADNzZI82CSGP4oKVz6XZGW/4+SmvpIxTb0AAAAAAAAAALAAmT67/x8/ie8KP0Yka78FB6m+UsgWPQAAAAAAAAAAml6VvD8/qj8tp2O+zy0Dv00M1DtXrhS9AAAAAAAAAADaQZi9/VO8P0rxLr7ZYUu+QDpuvvJ8074AAAAAAAAAAAA4NDsN0r0/O+05PaV8qz7vwO68qlTBvQAAAAAAAAAAzSmdPs6orD/o4U0/HEUCvtq5ir0Wo6A9AAAAAAAAAAANY54+yDDyPQwIOj7hGWS/k4DRPvzqmz4AAAAAAAAAAJrC/725nno/+7W7vnF0W7/XOBS9DvmDvQAAAAAAAAAAwFKTvctGsD3+ruO9jcWUv4kukjyeCgM+AAAAAAAAAACzSw29iT4WP1rib71rSV6/9+nwvBUn2rwAAAAAAAAAAF0k377Rhc4+ZXpCv0rzhb9CLzM+W8mmvQAAAAAAAAAAWi/UPWQMsj/Wl/M+rqYuvhukw73t8sK9AAAAAAAAAAAN4gG+97mcPgq8ub4vMZK/Lu/fPmgrZj0AAAAAAAAAAIV55b7yHrY+hOcyvxkTaL/lLhs+/SqrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFIp5YYBNmGMAWyUS1mMAXSUR0BZqhzzVc2SdX2UKGgGR8BmBXRPXTVlaAdLYGgIR0BZqh0ZFXq8dX2UKGgGR8BhP7/ACW/raAdLbGgIR0BZquyNXHR1dX2UKGgGR8A7qIGQjlgdaAdLTWgIR0BZrEjC53C9dX2UKGgGR8ByqDpkf9xZaAdLXmgIR0BZruKCQLeAdX2UKGgGR8BmuQDPnjhlaAdLdGgIR0BZsZWaMJhOdX2UKGgGR8Bsmwj2SMcZaAdLeGgIR0BZsf/BFd9ldX2UKGgGR8BbQj9jwx33aAdLW2gIR0BZsro8p1A8dX2UKGgGR8BB0djwx33YaAdLRGgIR0BZtyMDOkckdX2UKGgGR8BntiMBIWgwaAdLbmgIR0BZuTz7MxGldX2UKGgGR8BLI8cENe+maAdLQGgIR0BZuf0h/y5JdX2UKGgGR8BaCofCAMDwaAdLWWgIR0BZumvr4WUKdX2UKGgGR8BYfswDeTFEaAdLRWgIR0BZvbqptJnQdX2UKGgGR8BG/z2FnIyTaAdLbmgIR0BZv0vXbuc+dX2UKGgGR8BRY4QBgeA/aAdLRWgIR0BZwFFYuCf6dX2UKGgGR8BgVIZ62OQyaAdLcWgIR0BZwgssg+yJdX2UKGgGR8BogZzBAOawaAdLb2gIR0BZwz5GjKxLdX2UKGgGR8Bga6dz4k/saAdLYWgIR0BZw55/smfHdX2UKGgGR8Ba2Ip+c6NmaAdLiGgIR0BZxdRaX8fndX2UKGgGR8BnqvOfNA1OaAdLfWgIR0BZx53X7LuAdX2UKGgGR8BTpC2c8TzvaAdLTWgIR0BZytSMtK7JdX2UKGgGR8BYt74zrNW3aAdLYmgIR0BZy3Qla8pTdX2UKGgGR8BN2lZgXuVpaAdLZWgIR0BZy3XmNipedX2UKGgGR8BrT7rLQokSaAdLbGgIR0BZzL4agmJFdX2UKGgGR8AqVI7vG6wuaAdLWWgIR0BZz5eNT987dX2UKGgGR8BWXC/GlyimaAdLRGgIR0BZ0B4IKMNudX2UKGgGR8BD3qSgXdj5aAdLnWgIR0BZ0VBD5TIedX2UKGgGR8Blhdw1ivxIaAdLW2gIR0BZ0TaXa8HwdX2UKGgGR8BEq4Ia99MLaAdLU2gIR0BZ0mtdRiw0dX2UKGgGR8Bq4I2XLNfPaAdLYmgIR0BZ0oB/7SApdX2UKGgGR8BhURJsfq5caAdLUGgIR0BZ08XzlLezdX2UKGgGR8BYaF6AvtdBaAdLVGgIR0BZ1h3V09yMdX2UKGgGR8BUBD/lyR0VaAdLU2gIR0BZ2V+d9UjtdX2UKGgGR8BPNkVFhG6PaAdLRWgIR0BZ24d6sySFdX2UKGgGR8BTYw6IWP92aAdLZ2gIR0BZ27ulXRw7dX2UKGgGR8BxcPF85S3taAdLZmgIR0BZ4CMcZLqVdX2UKGgGR8BlBHG2kSElaAdLSWgIR0BZ4SYPXkHVdX2UKGgGR8BSqKjFhoduaAdLRGgIR0BZ4an752yLdX2UKGgGR8BXZU6kqMFVaAdLV2gIR0BZ4aq0dBBzdX2UKGgGR8BhUi5d4VynaAdLfGgIR0BZ4aBEroW6dX2UKGgGR8BmhEGcFyJbaAdLZ2gIR0BZ5DaK1og3dX2UKGgGR8BMrB0Qsf7raAdLPGgIR0BZ5PFvQ4S6dX2UKGgGR8AxZnKnvUjLaAdLWWgIR0BZ5ZdSl3yJdX2UKGgGR8BbKRisny/caAdLT2gIR0BZ5tVzZHurdX2UKGgGR8BbqGUnogV5aAdLaWgIR0BZ6mu5jH4odX2UKGgGR8BmZpGDtgKGaAdLiGgIR0BZ66SHM2WIdX2UKGgGR8BQyGl67dzoaAdLUmgIR0BZ7axgRbr1dX2UKGgGR8BOEcU/OdGzaAdLQWgIR0BZ8IKx9oexdX2UKGgGR8BNiJTMqz7eaAdLUmgIR0BZ8Gac7QsxdX2UKGgGR8BQESD/VAiWaAdLfWgIR0BZ8RzeXRgJdX2UKGgGR8BgCLxNIsiCaAdLfmgIR0BZ8YVRDTjOdX2UKGgGR8BVVDV2A5JcaAdLRGgIR0BZ8rHU+cH4dX2UKGgGR8BLgoj4YaYNaAdLTGgIR0BZ9FnAZbY9dX2UKGgGR8BbEAudwvQGaAdLXmgIR0BZ+GnXNC7cdX2UKGgGR8BoRSslsxfwaAdLUWgIR0BZ+UdzXBgvdX2UKGgGR8BcllWsA/9paAdLfWgIR0BZ+ogvDgqFdX2UKGgGR8BRlR5xBE8aaAdLQGgIR0BZ+z238XN1dX2UKGgGR8BqsSyWzF/AaAdLSmgIR0BZ/HS0BwMqdX2UKGgGR8BW0GMXJo0zaAdLdGgIR0BZ/VVYISlFdX2UKGgGR8BWZSKvV3EAaAdLb2gIR0BZ/8DOkcjrdX2UKGgGR8BZgjJMg2ZRaAdLcGgIR0BaAgdGRV6vdX2UKGgGR8BEJjD0lJHzaAdLSmgIR0BaAniR4hUzdX2UKGgGR8BacSSV4X41aAdLV2gIR0BaBSAlOXVtdX2UKGgGR8BxXgE6kqMFaAdLmGgIR0BaCTF6zE75dX2UKGgGR0A6cRm9QGfPaAdLbmgIR0BaCsG1QZXNdX2UKGgGR8Boi9TWGyooaAdLT2gIR0BaC8p5NXYEdX2UKGgGR8BmFvRsuWa+aAdLfmgIR0BaDJKJ2t+1dX2UKGgGR8BmLG85CF9KaAdLdmgIR0BaDc7yQPqcdX2UKGgGR8BfnuKfnOjZaAdLVWgIR0BaD2LYPGyYdX2UKGgGR8Bndj/6wdKeaAdLcWgIR0BaD9gBtDUmdX2UKGgGR8BgZfmV7hNuaAdLX2gIR0BaEJ9Vmz0IdX2UKGgGR8Bb1TodMj/uaAdLaGgIR0BaFKZ2IO6NdX2UKGgGR8A4aLkCFK02aAdLZGgIR0BaFP6j3225dX2UKGgGR8Bd03w9aEBbaAdLlmgIR0BaFwqZtvXLdX2UKGgGR8BUUunQ6ZH/aAdLQGgIR0BaGRgqmTC+dX2UKGgGR8BhgIJZ4fOlaAdLZWgIR0BaGOYhMajvdX2UKGgGR8Bj5y53C9AYaAdLdGgIR0BaGf0yxiXqdX2UKGgGR8BStY+W4Vh1aAdLV2gIR0BaGsM3IdU9dX2UKGgGR8BHnkhzNliCaAdLaWgIR0BaHAR9PUKBdX2UKGgGR8BTzE70WdmQaAdLS2gIR0BaHfw/gR9PdX2UKGgGR8BanAl0HQhPaAdLWmgIR0BaILMgU1yedX2UKGgGR8BqD8hA4XGfaAdLfmgIR0BaIWiHqNZNdX2UKGgGR8BgVEhzNliCaAdLWGgIR0BaIxWT5ftydX2UKGgGR8BbGrU5MlC1aAdLU2gIR0BaI4DoyKvWdX2UKGgGR8BllCLQ5WBCaAdLVWgIR0BaJRoIv8IidX2UKGgGR8BPOjoQnQY2aAdLQWgIR0BaJnTy8SPEdX2UKGgGR8BhmEsg+yJLaAdLdmgIR0BaKRaxHG0edX2UKGgGR8BZ9qWC2+fzaAdLS2gIR0BaKsxj8UEgdX2UKGgGR8BL7R77bcoIaAdLZGgIR0BaLTsY2sJZdX2UKGgGR8BEuxkVeruIaAdLbGgIR0BaLuW4Vh1DdX2UKGgGR8BM+APNFBppaAdLR2gIR0BaL4axX4j9dX2UKGgGR8BgXDJp35eraAdLhmgIR0BaMSSFGoaUdX2UKGgGR8Bal1j7Q9idaAdLaGgIR0BaM+1KGtZFdX2UKGgGR8BLEPwNLDhtaAdLeGgIR0BaN0iyIHkcdX2UKGgGR0BKpTsY2sJZaAdLU2gIR0BaORSpBHCodX2UKGgGR8ByguvGIbfhaAdLfGgIR0BaOhrSE12rdX2UKGgGR8BDYUQK8cuKaAdLdmgIR0BaOgdGRV6vdX2UKGgGR8A4nsqrilzmaAdLR2gIR0BaO+/xlQMydX2UKGgGR8BTjW2kSElFaAdLbmgIR0BaP4BFNL13dX2UKGgGR8BYadPLxI8RaAdLeGgIR0BaP3oLXtjTdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 15,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0964c4d6c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0964c4d750>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0964c4d7e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0964c4d870>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b0964c4d900>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b0964c4d990>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0964c4da20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0964c4dab0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b0964c4db40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0964c4dbd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0964c4dc60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0964c4dcf0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b0964bed000>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1730715311559974939,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaYMz3tfKg/15qDPn4jp75jY407iB6rPQAAAAAAAAAAXZmkPqD5iz+yiwM/ijdfv74NBr4tIKA9AAAAAAAAAABAekE+whLLPmZbyT4M1qS/T3ugvK1inj4AAAAAAAAAACNwbr6b4Cs/bpD4vnm9iL8om+s+mVa1PgAAAAAAAAAA83v+vTW2OD7XvIc9626xv7HzR78+CNG+AAAAAAAAAADN39E8MYEdPzqkXz7bdYe/W221vk0ydr4AAAAAAAAAAIAdur08lK0/gtp4viEuGb/tuRQ//uOCPgAAAAAAAAAAM9eWu4wvsj9V+xC+gXicvhwmhLot81m9AAAAAAAAAAAA6BA9MquUP3reWT7Vq0G/SJW+vcHcAL4AAAAAAAAAAACx8LyI1aw/iIv7vqn34r7o6Zg8Jv0kPQAAAAAAAAAA2i9QvjQ9ij82Yua9K3JAv4jBB72J+sQ9AAAAAAAAAAAWgVu+TuqEP5DxWr+Q7lm/B7+TPlWIhT4AAAAAAAAAAIC4ID7w160/ciNbPnf0Kr8OAwa9f2OyPgAAAAAAAAAAsxUDvU9zvT/aA8y9MracvRLCjr0mpiq9AAAAAAAAAABmlbA80XW8P3nfvj5+pes+18YFvQo+4L0AAAAAAAAAABu6tr4rVPc9qN9QP1KSh787QhDA8uOLwAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFiI0qH44+MAWyUS0eMAXSUR0BHXlbeMyaedX2UKGgGR8BikF4TsY2saAdLamgIR0BHZEAYHgP3dX2UKGgGR8B4jl+YtxuLaAdLkmgIR0BHY5lnRLK3dX2UKGgGR8BesmCyyD7JaAdLRmgIR0BHZx64UeuFdX2UKGgGR8BRoNucc2itaAdLbWgIR0BHbZQxesxPdX2UKGgGR8BY0Lsa86FNaAdLPGgIR0BHa7wrlNlAdX2UKGgGR8BkSEAo5PuYaAdLWGgIR0BHcZaNdZ7pdX2UKGgGR8BtSudoWYWtaAdLbWgIR0BHd243FUADdX2UKGgGR8BeWrwF1SwXaAdLYWgIR0BHeIfCAMDwdX2UKGgGR8BeZM6JZW7waAdLUGgIR0BHfl+uvECOdX2UKGgGR8BXa/D+BH09aAdLTmgIR0BHgTmOlwcYdX2UKGgGR8Bn7Qhje9BbaAdLaGgIR0BHg1GkN4JNdX2UKGgGR8Bl39roGIKuaAdLXGgIR0BHhLJ0W/JvdX2UKGgGR8BoKk/MW43FaAdLbGgIR0BHheeFtbcHdX2UKGgGR8BYbWlQ/HHWaAdLOmgIR0BHif+sHSncdX2UKGgGR8BhNCJVKf4AaAdLaGgIR0BHiTfaYeDGdX2UKGgGR8BeytC/oJRgaAdLYmgIR0BHjXOGCZnddX2UKGgGR8BhSOx4Y77saAdLd2gIR0BHlCdJ8OTadX2UKGgGR8BnDKunuRcNaAdLaGgIR0BHl6bnX/YKdX2UKGgGR8Bi1IM2FWXDaAdLV2gIR0BHl74rSVnmdX2UKGgGR0AnAxSHdoFnaAdLQWgIR0BHmhrvb48EdX2UKGgGR8BIMV2zOX3QaAdLTGgIR0BHnnSOR1YAdX2UKGgGR8BYY571Iy0saAdLQGgIR0BHn1Z1V5rydX2UKGgGR8BgIMYqG1x9aAdLWGgIR0BHnjgAIY3vdX2UKGgGR8BnaI0TDfm+aAdLfWgIR0BHpShrWRRudX2UKGgGR8BQGaClJpWWaAdLPmgIR0BHpTImw7kodX2UKGgGR8BeSuDWbwz+aAdLlmgIR0BHrqKP4mCzdX2UKGgGR8BaFNKqXF98aAdLSGgIR0BHsbxVhkRSdX2UKGgGR8BPhDkU9IPLaAdLO2gIR0BHtEBsANobdX2UKGgGR8BWUxvNu+AVaAdLPWgIR0BHtWTgVGkOdX2UKGgGR8BSYPfCQ9zPaAdLPGgIR0BHu+A3DNyHdX2UKGgGR8BkQAHJLdvbaAdLdmgIR0BHvLnkkrwwdX2UKGgGR8Bghg/5ckdFaAdLVGgIR0BHvvegte2NdX2UKGgGR8BYZpoXbdrPaAdLbmgIR0BHwLsrupjudX2UKGgGR8Bw8c7T2FnJaAdLdWgIR0BHxSad+XqrdX2UKGgGR8B0YZvDP4VRaAdLgmgIR0BHxQuuieundX2UKGgGR8BcujTvy9VWaAdLTGgIR0BHxAxSHdoGdX2UKGgGR8Be9sFlkH2RaAdLh2gIR0BHyKMWGh24dX2UKGgGR8BegvjKgZjyaAdLSmgIR0BHyjziCJ40dX2UKGgGR8BguOPBBRhuaAdLZGgIR0BHy3dsSCe3dX2UKGgGR8BIyu9OARTTaAdLZWgIR0BH0Pv0AcT8dX2UKGgGR8BU7GH58BuGaAdLR2gIR0BH0dxAB1cMdX2UKGgGR8BU4Ieo1k1/aAdLRGgIR0BH3P3SKFZgdX2UKGgGR8Bq9NNQCSzPaAdLW2gIR0BH3ois4ku6dX2UKGgGR8B1mnefqX4TaAdLVmgIR0BH3588cMmXdX2UKGgGR8BfozWXkYGdaAdLR2gIR0BH4WxY7q6fdX2UKGgGR8Bku3IuGsV+aAdLfmgIR0BH4y6MBIWhdX2UKGgGR8BgCKoVEd/8aAdLQWgIR0BH5G0eEIw/dX2UKGgGR8BsfqAQQL/kaAdLaGgIR0BH52tEG7jDdX2UKGgGR8BunaDZlFtsaAdLRWgIR0BH67xNIsiCdX2UKGgGR8BqkWzt1IRRaAdLVWgIR0BH7jW9US7HdX2UKGgGR8BUpi4Wk8A8aAdLVWgIR0BH7TD4xk/bdX2UKGgGR8BpkwBmwqy4aAdLcWgIR0BH85vLowEhdX2UKGgGR8BaYUXxe9i+aAdLaGgIR0BH8wPiDM/ydX2UKGgGR8BlXDRfF72MaAdLTmgIR0BH9nG8274BdX2UKGgGR8BfPxAKOT7maAdLbWgIR0BH/OivgWJrdX2UKGgGR8Bzwl+fAbhnaAdLamgIR0BH/mBnSOR1dX2UKGgGR8BcrXDaXa8IaAdLQ2gIR0BIAxjJ+2E1dX2UKGgGR8BWV4mb9ZRsaAdLTGgIR0BIBYDs+mm+dX2UKGgGR8Bo1IqwyIpIaAdLT2gIR0BIBXgk1MufdX2UKGgGR8BeEfI8yN4raAdLWmgIR0BICGFJxvNvdX2UKGgGR8BU+0Jv5xioaAdLd2gIR0BICvF3pwCKdX2UKGgGR8BVs8PWhAW0aAdLP2gIR0BIC/M4cWCVdX2UKGgGR8BdJyJGe+VUaAdLSmgIR0BIEAVfu1F6dX2UKGgGR8Bljt0o0ALiaAdLW2gIR0BIEqKHfuTidX2UKGgGR8Bfwa59Vmz0aAdLV2gIR0BIFMyzollcdX2UKGgGR8BkjwjbBXS0aAdLbGgIR0BIGBgeA/cGdX2UKGgGR8BZr1AiV0LdaAdLOGgIR0BIIgJb+tKadX2UKGgGR8BZg4nBtUGWaAdLYWgIR0BIIunuRcNZdX2UKGgGR0A477r9l2/0aAdLk2gIR0BIJqASWZ7YdX2UKGgGR8BeTW3OObRXaAdLQ2gIR0BIKiIUJv5ydX2UKGgGR8Bb3jB/I8yOaAdLV2gIR0BIKeFL39JjdX2UKGgGR8B4csod+5OKaAdLeGgIR0BILwhGH58CdX2UKGgGR8BU0OchC+lCaAdLSGgIR0BIL5byH2ytdX2UKGgGR8BVtqS5iExqaAdLSmgIR0BIMaFdszl+dX2UKGgGR8Bb0mZuyeI3aAdLf2gIR0BINZyuIRAbdX2UKGgGR8BgeFxdY4hmaAdLZGgIR0BINX3YcvM9dX2UKGgGR8BwB2zVtoBaaAdLeWgIR0BIOT1TR6WxdX2UKGgGR8BT6NYbKifyaAdLN2gIR0BIQcNpdrwfdX2UKGgGR8BFW+YtxuKoaAdLPWgIR0BIQQgs9SuRdX2UKGgGR8BfCIo3Jgb7aAdLY2gIR0BIQisfaHsUdX2UKGgGR8BoPjX6InBtaAdLgGgIR0BIRVuzhP0qdX2UKGgGR8BwP3o9s7+2aAdLYmgIR0BIRqlxffGddX2UKGgGR8BhFKi0v4/NaAdLX2gIR0BISGt6ol2NdX2UKGgGR8BMTv1lGwzMaAdLTWgIR0BISEYO2AoYdX2UKGgGR8BdRrk0aZQYaAdLa2gIR0BISOUliSaFdX2UKGgGR8BhmyFAVwglaAdLN2gIR0BISo+wC8vmdX2UKGgGR8BonpZSvTw2aAdLQmgIR0BIVTVtoBaLdX2UKGgGR8BtQdMIu5BkaAdLXWgIR0BIVuOjqOcUdX2UKGgGR8BbuwAp8WsSaAdLTGgIR0BIWiCJ40MxdX2UKGgGR8BzB5ClabF1aAdLaWgIR0BIXYk3S8aodX2UKGgGR8BhYdr433pOaAdLW2gIR0BIXgAyVObidX2UKGgGR8Bg5nS6UaAGaAdLaGgIR0BIYfwI+nqFdX2UKGgGR8BtIJc5bQkYaAdLVGgIR0BIaedTYNAkdX2UKGgGR8B8V0ixFAmiaAdLZGgIR0BIafjS5RTCdX2UKGgGR8BrhAeT3Zf2aAdLTmgIR0BIbsHbAUL2dX2UKGgGR8BW7QE+xGDuaAdLYWgIR0BIcS8an753dX2UKGgGR8BfS/o/zJ6qaAdLW2gIR0BIdGIKtxMndX2UKGgGR8BhrCSHM2WIaAdLX2gIR0BIc6Hj6vaDdX2UKGgGR8BZG89nscABaAdLW2gIR0BIdsINVinYdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 7,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d2bf0fc951c35c82d65b0e655ba65b8bf3e8a71067711a574f6cde37e397bda
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45e7cb79d2877a29b8b408d40dde0bfc5de75ac099b032586b834b6992b36507
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ad3aad30c359666b9eb93f4f8ca46397953f2f3951c68312018da3b9325d852
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6820ffaaa576abc768a91a4ff1770e3f797a7616b14f3309e66b517e9be387c
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -180.30995776947822, "std_reward": 24.37347886414303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-04T08:59:27.346998"}
 
1
+ {"mean_reward": -88.93909544469788, "std_reward": 132.84146147186755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-04T10:16:20.111038"}