--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK cat widget: [] --- # SDXL LoRA DreamBooth - basakozsoy/maya_LoRA ## Model description These are basakozsoy/maya_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK cat to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](basakozsoy/maya_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL repo_id = 'basakozsoy/maya_LoRA' vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights(repo_id) _ = pipe.to("cuda") pipe.load_lora_weights(repo_id) ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]