class SeizureDetectionCNN(nn.Module): def init(self, num_classes=2): super(SeizureDetectionCNN, self).init() self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 32, 32 self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 16, 16 self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 16, 16 -> 64, 8, 8 # Adding Batch Normalization self.bn1 = nn.BatchNorm2d(32) self.bn2 = nn.BatchNorm2d(64) self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50% self.fc1= nn.Linear(64 * 8 * 8, 120) self.fc2= nn.Linear(120, 32) self.fc3= nn.Linear(32, num_classes) def forward(self, x): x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 32, 32 x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 8, 8 x = torch.flatten(x, 1) x = self.dropout(F.relu(self.fc1(x))) # Apply dropout x = self.dropout(F.relu(self.fc2(x))) # Apply dropout x = self.fc3(x) return x