test
Browse files- .envrc +1 -0
- model-card.md +40 -27
- requirements.txt +1 -0
- scripts/upload_to_hub.py +35 -8
.envrc
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
HF_USERNAME=bawolf
|
model-card.md
CHANGED
@@ -16,43 +16,56 @@ This model is a fine-tuned version of CLIP (ViT-Large/14) specialized in classif
|
|
16 |
|
17 |
## Model Description
|
18 |
|
19 |
-
- **Model Type:**
|
20 |
-
- **Base Model:** ViT-Large/14
|
|
|
|
|
|
|
|
|
|
|
21 |
- **Task:** Video Classification
|
22 |
- **Training Data:** Custom break dance video dataset
|
23 |
-
- **Output:** 3 classes of break dance moves
|
24 |
|
25 |
## Usage
|
26 |
|
27 |
```python
|
28 |
-
from transformers import CLIPProcessor, CLIPModel
|
29 |
import torch
|
30 |
-
import
|
31 |
from PIL import Image
|
|
|
|
|
|
|
32 |
|
33 |
# Load model and processor
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```
|
57 |
|
58 |
## Limitations
|
|
|
16 |
|
17 |
## Model Description
|
18 |
|
19 |
+
- **Model Type:** Custom CLIP-based architecture (VariableLengthCLIP)
|
20 |
+
- **Base Model:** CLIP ViT-Large/14 (for feature extraction)
|
21 |
+
- **Architecture:**
|
22 |
+
- Uses CLIP's vision encoder for frame-level feature extraction
|
23 |
+
- Processes multiple frames from a video
|
24 |
+
- Averages frame features
|
25 |
+
- Projects to 3 classes via a learned linear layer
|
26 |
- **Task:** Video Classification
|
27 |
- **Training Data:** Custom break dance video dataset
|
28 |
+
- **Output:** 3 classes of break dance moves (windmill, halo, swipe)
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
```python
|
|
|
33 |
import torch
|
34 |
+
from transformers import CLIPProcessor
|
35 |
from PIL import Image
|
36 |
+
import cv2
|
37 |
+
import numpy as np
|
38 |
+
from src.models.model import create_model
|
39 |
|
40 |
# Load model and processor
|
41 |
+
model = create_model(num_classes=3, pretrained_model_name="openai/clip-vit-large-patch14")
|
42 |
+
state_dict = torch.load("model.pth")
|
43 |
+
model.load_state_dict(state_dict)
|
44 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
45 |
+
|
46 |
+
# Process video
|
47 |
+
def process_video(video_path, model, processor):
|
48 |
+
video = cv2.VideoCapture(video_path)
|
49 |
+
frames = []
|
50 |
+
|
51 |
+
while video.isOpened():
|
52 |
+
ret, frame = video.read()
|
53 |
+
if not ret:
|
54 |
+
break
|
55 |
+
|
56 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
57 |
+
frame_pil = Image.fromarray(frame_rgb)
|
58 |
+
processed = processor(images=frame_pil, return_tensors="pt")
|
59 |
+
frames.append(processed.pixel_values)
|
60 |
+
|
61 |
+
video.release()
|
62 |
+
|
63 |
+
# Stack frames and process
|
64 |
+
frames_tensor = torch.cat(frames, dim=0)
|
65 |
+
with torch.no_grad():
|
66 |
+
predictions = model(frames_tensor.unsqueeze(0))
|
67 |
+
|
68 |
+
return predictions
|
69 |
```
|
70 |
|
71 |
## Limitations
|
requirements.txt
CHANGED
@@ -9,6 +9,7 @@ cog==0.12.0
|
|
9 |
colorlog==6.9.0
|
10 |
contourpy==1.3.0
|
11 |
cycler==0.12.1
|
|
|
12 |
fastapi==0.110.3
|
13 |
filelock==3.16.1
|
14 |
fonttools==4.54.1
|
|
|
9 |
colorlog==6.9.0
|
10 |
contourpy==1.3.0
|
11 |
cycler==0.12.1
|
12 |
+
dotenv==1.0.1
|
13 |
fastapi==0.110.3
|
14 |
filelock==3.16.1
|
15 |
fonttools==4.54.1
|
scripts/upload_to_hub.py
CHANGED
@@ -1,17 +1,44 @@
|
|
1 |
-
from transformers import CLIPProcessor
|
2 |
from huggingface_hub import HfApi
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def upload_model_to_hub():
|
5 |
# Initialize huggingface api
|
6 |
api = HfApi()
|
7 |
|
8 |
-
# Load your
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
if __name__ == "__main__":
|
17 |
-
|
|
|
|
|
|
1 |
+
from transformers import CLIPProcessor
|
2 |
from huggingface_hub import HfApi
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import torch
|
6 |
+
from src.models.model import create_model
|
7 |
|
8 |
+
def upload_model_to_hub(hf_username):
|
9 |
# Initialize huggingface api
|
10 |
api = HfApi()
|
11 |
|
12 |
+
# Load your custom model
|
13 |
+
num_classes = 3 # windmills, halos, and swipes
|
14 |
+
model = create_model(num_classes, "openai/clip-vit-large-patch14")
|
15 |
+
|
16 |
+
# Load your trained weights
|
17 |
+
state_dict = torch.load("./checkpoints/model.pth", map_location="cpu")
|
18 |
+
model.load_state_dict(state_dict, strict=False)
|
19 |
+
|
20 |
+
# Get the processor from the base CLIP model
|
21 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
22 |
|
23 |
+
repo_id = f"{hf_username}/breaking-vision-clip-classifier"
|
24 |
+
|
25 |
+
# Save model configuration and architecture
|
26 |
+
config = {
|
27 |
+
"num_classes": num_classes,
|
28 |
+
"base_model": "openai/clip-vit-large-patch14",
|
29 |
+
"class_labels": ["windmill", "halo", "swipe"],
|
30 |
+
"model_type": "VariableLengthCLIP"
|
31 |
+
}
|
32 |
+
|
33 |
+
# Push to hub with config
|
34 |
+
model.push_to_hub(
|
35 |
+
repo_id,
|
36 |
+
config_dict=config,
|
37 |
+
commit_message="Upload custom CLIP-based dance classifier"
|
38 |
+
)
|
39 |
+
processor.push_to_hub(repo_id)
|
40 |
|
41 |
if __name__ == "__main__":
|
42 |
+
load_dotenv()
|
43 |
+
hf_username = os.getenv("HF_USERNAME")
|
44 |
+
upload_model_to_hub(hf_username)
|