File size: 3,390 Bytes
2e2ae20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.9
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4793
- Accuracy: 0.9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6559 | 1.0 | 112 | 0.5081 | 0.86 |
| 0.5141 | 2.0 | 225 | 0.5618 | 0.77 |
| 0.5517 | 3.0 | 337 | 0.5009 | 0.84 |
| 0.6651 | 4.0 | 450 | 0.7811 | 0.82 |
| 0.0057 | 5.0 | 562 | 0.3074 | 0.93 |
| 0.0018 | 6.0 | 675 | 0.4843 | 0.87 |
| 0.0007 | 7.0 | 787 | 0.6949 | 0.85 |
| 0.0007 | 8.0 | 900 | 0.6981 | 0.88 |
| 0.0007 | 9.0 | 1012 | 0.8356 | 0.87 |
| 0.0001 | 10.0 | 1125 | 0.6164 | 0.89 |
| 0.1709 | 11.0 | 1237 | 0.5464 | 0.89 |
| 0.0001 | 12.0 | 1350 | 0.4885 | 0.88 |
| 0.0003 | 13.0 | 1462 | 0.4970 | 0.91 |
| 0.0 | 14.0 | 1575 | 0.5346 | 0.88 |
| 0.0001 | 15.0 | 1687 | 0.5526 | 0.89 |
| 0.0 | 16.0 | 1800 | 0.4808 | 0.91 |
| 0.0 | 17.0 | 1912 | 0.4999 | 0.9 |
| 0.0 | 18.0 | 2025 | 0.4909 | 0.89 |
| 0.0 | 19.0 | 2137 | 0.4953 | 0.89 |
| 0.0 | 20.0 | 2250 | 0.4883 | 0.9 |
| 0.0543 | 21.0 | 2362 | 0.4830 | 0.91 |
| 0.0 | 22.0 | 2475 | 0.4811 | 0.9 |
| 0.0 | 23.0 | 2587 | 0.4805 | 0.9 |
| 0.0 | 24.0 | 2700 | 0.4785 | 0.91 |
| 0.0 | 24.89 | 2800 | 0.4793 | 0.9 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.15.0
|