--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5 results: [] --- # resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9013 - Accuracy: 0.7933 - Brier Loss: 0.3080 - Nll: 1.8102 - F1 Micro: 0.7932 - F1 Macro: 0.7937 - Ece: 0.0719 - Aurc: 0.0635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 250 | 6.0054 | 0.098 | 0.9327 | 9.3196 | 0.0980 | 0.0481 | 0.0462 | 0.8670 | | 6.0141 | 2.0 | 500 | 5.4713 | 0.2195 | 0.8933 | 5.2235 | 0.2195 | 0.1452 | 0.1046 | 0.7129 | | 6.0141 | 3.0 | 750 | 4.4006 | 0.4535 | 0.7034 | 3.0178 | 0.4535 | 0.4351 | 0.1373 | 0.3334 | | 4.5079 | 4.0 | 1000 | 3.8431 | 0.59 | 0.5686 | 2.5843 | 0.59 | 0.5822 | 0.1309 | 0.2072 | | 4.5079 | 5.0 | 1250 | 3.5315 | 0.6552 | 0.4864 | 2.4330 | 0.6552 | 0.6537 | 0.1048 | 0.1504 | | 3.5028 | 6.0 | 1500 | 3.2850 | 0.707 | 0.4163 | 2.2375 | 0.707 | 0.7082 | 0.0790 | 0.1111 | | 3.5028 | 7.0 | 1750 | 3.0974 | 0.7312 | 0.3721 | 2.0933 | 0.7312 | 0.7328 | 0.0452 | 0.0899 | | 3.0599 | 8.0 | 2000 | 3.0385 | 0.7455 | 0.3561 | 2.0148 | 0.7455 | 0.7456 | 0.0432 | 0.0838 | | 3.0599 | 9.0 | 2250 | 2.9978 | 0.7565 | 0.3432 | 1.9780 | 0.7565 | 0.7572 | 0.0437 | 0.0777 | | 2.8562 | 10.0 | 2500 | 2.9853 | 0.7622 | 0.3397 | 1.9176 | 0.7622 | 0.7619 | 0.0495 | 0.0751 | | 2.8562 | 11.0 | 2750 | 2.9803 | 0.7615 | 0.3385 | 1.9327 | 0.7615 | 0.7627 | 0.0547 | 0.0760 | | 2.7414 | 12.0 | 3000 | 2.9711 | 0.7658 | 0.3322 | 1.9439 | 0.7658 | 0.7661 | 0.0495 | 0.0740 | | 2.7414 | 13.0 | 3250 | 2.9618 | 0.771 | 0.3276 | 1.8599 | 0.771 | 0.7718 | 0.0548 | 0.0704 | | 2.6658 | 14.0 | 3500 | 2.9534 | 0.7762 | 0.3252 | 1.8935 | 0.7762 | 0.7770 | 0.0581 | 0.0699 | | 2.6658 | 15.0 | 3750 | 2.9568 | 0.776 | 0.3248 | 1.8836 | 0.776 | 0.7776 | 0.0588 | 0.0699 | | 2.6197 | 16.0 | 4000 | 2.9196 | 0.7812 | 0.3169 | 1.8338 | 0.7812 | 0.7814 | 0.0601 | 0.0655 | | 2.6197 | 17.0 | 4250 | 2.9267 | 0.7785 | 0.3202 | 1.8430 | 0.7785 | 0.7783 | 0.0647 | 0.0677 | | 2.5794 | 18.0 | 4500 | 2.9189 | 0.779 | 0.3155 | 1.8279 | 0.779 | 0.7794 | 0.0631 | 0.0661 | | 2.5794 | 19.0 | 4750 | 2.9324 | 0.7823 | 0.3177 | 1.8508 | 0.7823 | 0.7823 | 0.0665 | 0.0669 | | 2.5553 | 20.0 | 5000 | 2.9192 | 0.7837 | 0.3146 | 1.8312 | 0.7837 | 0.7840 | 0.0641 | 0.0654 | | 2.5553 | 21.0 | 5250 | 2.9160 | 0.7817 | 0.3140 | 1.8366 | 0.7817 | 0.7828 | 0.0682 | 0.0658 | | 2.53 | 22.0 | 5500 | 2.9172 | 0.7837 | 0.3139 | 1.8138 | 0.7837 | 0.7842 | 0.0602 | 0.0652 | | 2.53 | 23.0 | 5750 | 2.9132 | 0.7875 | 0.3134 | 1.8254 | 0.7875 | 0.7877 | 0.0656 | 0.0646 | | 2.5127 | 24.0 | 6000 | 2.9108 | 0.7875 | 0.3132 | 1.8367 | 0.7875 | 0.7869 | 0.0669 | 0.0652 | | 2.5127 | 25.0 | 6250 | 2.9272 | 0.7837 | 0.3139 | 1.8551 | 0.7837 | 0.7843 | 0.0632 | 0.0653 | | 2.4979 | 26.0 | 6500 | 2.9157 | 0.7867 | 0.3128 | 1.8101 | 0.7868 | 0.7876 | 0.0655 | 0.0647 | | 2.4979 | 27.0 | 6750 | 2.9031 | 0.785 | 0.3112 | 1.8089 | 0.785 | 0.7856 | 0.0688 | 0.0639 | | 2.4814 | 28.0 | 7000 | 2.9094 | 0.7875 | 0.3110 | 1.8594 | 0.7875 | 0.7880 | 0.0677 | 0.0646 | | 2.4814 | 29.0 | 7250 | 2.9110 | 0.7885 | 0.3116 | 1.8150 | 0.7885 | 0.7891 | 0.0696 | 0.0639 | | 2.4741 | 30.0 | 7500 | 2.9039 | 0.7877 | 0.3091 | 1.8471 | 0.7877 | 0.7887 | 0.0694 | 0.0632 | | 2.4741 | 31.0 | 7750 | 2.9029 | 0.7907 | 0.3087 | 1.7604 | 0.7907 | 0.7917 | 0.0691 | 0.0633 | | 2.4626 | 32.0 | 8000 | 2.8983 | 0.7877 | 0.3094 | 1.8191 | 0.7877 | 0.7884 | 0.0677 | 0.0625 | | 2.4626 | 33.0 | 8250 | 2.9024 | 0.7897 | 0.3088 | 1.8025 | 0.7897 | 0.7905 | 0.0720 | 0.0635 | | 2.4558 | 34.0 | 8500 | 2.9055 | 0.792 | 0.3070 | 1.7869 | 0.792 | 0.7920 | 0.0667 | 0.0628 | | 2.4558 | 35.0 | 8750 | 2.9055 | 0.788 | 0.3104 | 1.8349 | 0.788 | 0.7883 | 0.0733 | 0.0645 | | 2.4481 | 36.0 | 9000 | 2.9061 | 0.7887 | 0.3078 | 1.7840 | 0.7887 | 0.7898 | 0.0676 | 0.0642 | | 2.4481 | 37.0 | 9250 | 2.9086 | 0.7917 | 0.3102 | 1.7942 | 0.7917 | 0.7923 | 0.0716 | 0.0644 | | 2.4422 | 38.0 | 9500 | 2.9067 | 0.7897 | 0.3084 | 1.7915 | 0.7897 | 0.7900 | 0.0704 | 0.0637 | | 2.4422 | 39.0 | 9750 | 2.9080 | 0.7927 | 0.3092 | 1.7951 | 0.7927 | 0.7930 | 0.0709 | 0.0631 | | 2.4386 | 40.0 | 10000 | 2.9064 | 0.7943 | 0.3084 | 1.8079 | 0.7943 | 0.7949 | 0.0734 | 0.0635 | | 2.4386 | 41.0 | 10250 | 2.8990 | 0.792 | 0.3056 | 1.7918 | 0.792 | 0.7924 | 0.0699 | 0.0623 | | 2.4312 | 42.0 | 10500 | 2.9057 | 0.7893 | 0.3090 | 1.7892 | 0.7893 | 0.7901 | 0.0735 | 0.0641 | | 2.4312 | 43.0 | 10750 | 2.8998 | 0.7923 | 0.3079 | 1.7909 | 0.7923 | 0.7932 | 0.0707 | 0.0630 | | 2.4294 | 44.0 | 11000 | 2.9108 | 0.7905 | 0.3090 | 1.8220 | 0.7905 | 0.7916 | 0.0773 | 0.0636 | | 2.4294 | 45.0 | 11250 | 2.9030 | 0.7927 | 0.3086 | 1.8126 | 0.7927 | 0.7932 | 0.0710 | 0.0631 | | 2.4282 | 46.0 | 11500 | 2.9033 | 0.7915 | 0.3077 | 1.8234 | 0.7915 | 0.7920 | 0.0712 | 0.0631 | | 2.4282 | 47.0 | 11750 | 2.8975 | 0.7957 | 0.3063 | 1.8070 | 0.7957 | 0.7968 | 0.0702 | 0.0630 | | 2.4246 | 48.0 | 12000 | 2.9049 | 0.7935 | 0.3085 | 1.8090 | 0.7935 | 0.7944 | 0.0722 | 0.0635 | | 2.4246 | 49.0 | 12250 | 2.9020 | 0.792 | 0.3075 | 1.8233 | 0.792 | 0.7927 | 0.0700 | 0.0638 | | 2.4227 | 50.0 | 12500 | 2.9013 | 0.7933 | 0.3080 | 1.8102 | 0.7932 | 0.7937 | 0.0719 | 0.0635 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231002 - Datasets 2.7.1 - Tokenizers 0.13.3