--- license: apache-2.0 base_model: jordyvl/vit-base_rvl-cdip tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_rvl_cdip-N1K_AURC_128 results: [] --- # vit-base_rvl_cdip-N1K_AURC_128 This model is a fine-tuned version of [jordyvl/vit-base_rvl-cdip](https://huggingface.co/jordyvl/vit-base_rvl-cdip) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Accuracy: 0.8962 - Brier Loss: 0.1742 - Nll: 0.8794 - F1 Micro: 0.8962 - F1 Macro: 0.8963 - Ece: 0.0736 - Aurc: 0.0200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 125 | 0.1357 | 0.8898 | 0.1657 | 1.2064 | 0.8898 | 0.8907 | 0.0492 | 0.0181 | | No log | 2.0 | 250 | 0.1615 | 0.898 | 0.1602 | 1.0955 | 0.898 | 0.8986 | 0.0473 | 0.0181 | | No log | 3.0 | 375 | 0.1795 | 0.896 | 0.1630 | 1.0031 | 0.8960 | 0.8959 | 0.0599 | 0.0180 | | 0.0132 | 4.0 | 500 | 0.2094 | 0.8978 | 0.1662 | 0.9561 | 0.8978 | 0.8977 | 0.0633 | 0.0187 | | 0.0132 | 5.0 | 625 | 0.2290 | 0.898 | 0.1692 | 0.9249 | 0.898 | 0.8979 | 0.0665 | 0.0190 | | 0.0132 | 6.0 | 750 | 0.2430 | 0.898 | 0.1714 | 0.9150 | 0.898 | 0.8981 | 0.0690 | 0.0194 | | 0.0132 | 7.0 | 875 | 0.2567 | 0.898 | 0.1718 | 0.8888 | 0.898 | 0.8979 | 0.0702 | 0.0196 | | 0.0022 | 8.0 | 1000 | 0.2740 | 0.8975 | 0.1734 | 0.8800 | 0.8975 | 0.8975 | 0.0718 | 0.0199 | | 0.0022 | 9.0 | 1125 | 0.2715 | 0.896 | 0.1743 | 0.8824 | 0.8960 | 0.8960 | 0.0737 | 0.0199 | | 0.0022 | 10.0 | 1250 | 0.2754 | 0.8962 | 0.1742 | 0.8794 | 0.8962 | 0.8963 | 0.0736 | 0.0200 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231002 - Datasets 2.7.1 - Tokenizers 0.13.3